

EAST-ADL Introduction

Support for ISO26262

EAST-ADL Overview

EAST-ADL defines an Engineering information structure

- Feature content
- Functional content
- Software architecture
- Requirements
- Variability
- Safety information
- V&V Information
- O Behavior

EAST-ADL+AUTOSAR Representation

EAST-ADL Extensions

EAST-ADL Extensions

EAST-ADL vs AUTOSAR

EAST-ADL

For Features, Functional Architecture and Topology

AUTOSAR

For Software Architecture and Execution Platform

EAST-ADL vs AUTOSAR

- Different Abstraction Levels:
 - EAST-ADL complements AUTOSAR with "early phase" information
- Different Engineering Information Scope:
 - EAST-ADL complements AUTOSAR
 - Requirements Engineering
 - Variant Management
 - Behaviour (nominal/error)
 - Timing
 - Safety
- Same Meta-Metamodel
 - Enterprise Architect model used for both
 - Same file exchange ARXML-EAXML
 - Same tool infrastructure possible ARTOP-EATOP

Scope in AUTOSAR depending on version

ISO 26262 reference life cycle

Six ISO26262 Concerns

- Concept Phase Safety Goals
 - Risk assessment
- Concept Phase Functional Safety Concept
 - Topology-independent Solution
- Product Development Technical Safety Concept
 - Preliminary System solution
- Product Development Hardware and Software
 - Detailed hardware and software architecture
- Safety Element out of Context
 - Matching ASIL with ASIL
- Supplier-OEM Exchange
 - Matching ASIL with ASIL

ISO 26262 - What to handle for each phase

What to handle on each abstraction level

1. Safety Goals: Vehicle Level

Part 3.7 artifacts in EAST-ADL

Item Definition

Item Definition

Preliminary Hazard Analysis

EAST-ADL Introduction: Support for ISO26262

2. Functional Safety Concept: Analysis Level

Part 3.8 artifacts in EAST-ADL

Safety Modelling – Basic Concept

Functional Safety Concept

Functional Safety Requirement

3. Technical Safety Concept: Design Level

Part 4 artifacts in EAST-ADL

Technical Safety Concept

4. HW & SW Requirements: Implementation Level

- Part 5 artifacts in AUTOSAR (and IP-XACT)
- Part 6 artifacts in AUTOSAR

EAST-ADL Introduction: Support for ISO26262

AUTOSAR Elements

5. Safety Element out of Context

E.g. Technical Safety Concept without Functional Safety Concept:

Allocated Safety Constraints can play the role of Technical Safety Requirements when Functional Safety Concept is available

6. Supplier-OEM interaction: A/D/I Level

Nominal aspects:

Interfaces match between subsystems

Dependability aspects:

Safety Constraints Match between subsystems

- Safety is about avoiding Failures that may cause Hazards
- ISO26262 defines a systematic approach:
 - Identify Safety Goal
 - Create a safe architecture with safety requirements that meet safety Goal

ISO26262 element	Purpose		
Safety Goal	Avoid Hazard / FeatureFlaw	5	_
Functional Safety Concept	Avoid Failure (of abstract Function)	\langle	Trace
Technical Safety Concept	Avoid Failure (of Function on HW)	\langle	
HW and SW requirements	Avoid Failure (of SW Component on HW)	\mathcal{I}	

- Safety Benchmarking is about assessing how well a system/subsystem/component/mechanism/... fulfills requirements
 - In-context
 - Out-of-context
- Assessing Ability to Meet ASIL X Safety Goal
 - Conformance to Functional Safety Requirements
 - Conformance to Technical Safety Requirements
 - Conformance to HW and SW Requirements

- Benchmarking out-of-context = Conformance to anticipated
 - Functional Safety Requirements
 - Technical Safety Requirements
 - HW and SW Requirements
- To be able to draw conclusions on safety, the assessment of fault tolerance must
 - Address relevant faults
 - Be represented adequately
 =the fault tolerance capability can be related to requirements and safety goal

ErrorModel capture Failure propagation logic – can be identified using fault injection

FaultFailure capture faults and failures on ports of ErrorModel

ASIL constraint define expected or established "probability" of the fault or failure

34

Activities vs. Abstraction Levels

EAST-ADL	Vehicle Level	Define Features and requirements Identify FeatureFlaw and Hazard Identify Scenorios and Hazardous Event Define SafetyGoal
	Analysis Level	Define Functional Architecture Define Functional Safety Requirements and Concept Define ErrorModel and FaultFailure Define SafetyConstraints
	Design Level	Define Concrete Functional and Hardware Architecture Define Technical Safety Requirements and Concept Define ErrorModel and FaultFailure Define SafetyConstraints
AUTOSAR	Implementation Level	Define Software and detailed Hardware Architecture Define Software and Hardware Requirements Define ErrorModel and FaultFailure Define SafetyConstraints

EAST-ADL Introduction: Support for ISO26262

Finally...

- EAST-ADL is a language for Automotive EE engineering information
 - Shared ontology/terminology across companies and domains
 - EAXML exchange format to secure tool interoperability
 - Allows joint efforts on methodology, modelling and tools
- ...supports cross-cutting aspects through extensions.
- …is aligned with AUTOSAR elements and modelling infrastrucure
- ...provides means to plan, document and utilize safety benchmarking
- EATOP Eclipse platform can foster tool prototyping
- EAST-ADL Association is a structure to coordinate and harmonize language progress
- Collaborative aspect of EAST-ADL is particularly relevant for ISO26262

