Automatic ASIL Decomposition
Background

• ISO 26262 is the new automotive safety standard

• It uses ASILs – *Automotive Safety Integrity Levels* – to represent required levels of safety in a system

• ASILs can be decomposed over a system
 • A high ASIL can be met by multiple redundant components working together, each with a lower ASIL
 • Many possible ways to decompose ASILs
 • Hence the importance of automating ASIL decomposition
 • Allows the best strategies to be found more quickly
ASILs in ISO 26262

- Definition of ASILs
 - Carried out during Risk Assessment
 - Each Hazardous Event is assigned an ASIL (from A-D, or QM)
 - ASIL D is the highest, ASIL A the lowest
 - QM means no special safety requirement
 - Choice of ASIL is based on controllability, severity, and exposure time
 - Requires prior hazard analysis of system
- Corresponding safety goals & safe states should also be defined
ASILs in ISO 26262

- FTA is carried out as part of Functional Safety Requirements definition
- ASILs decomposed and allocated to system functions/components
 - Decomposition is determined by system failure logic (i.e. AND vs OR)
 - The ASIL assigned is determined by an ASIL algebra (e.g. ASIL C = B + A)
- Can be many possible ASIL assignments
 - This makes it difficult to perform manually
ASILs in ISO 26262

- Decomposition allows greater granularity of safety requirements

- Not all parts of the system need to conform to the highest levels of safety

- Allows resources to be focused on the most critical elements
ASILs in EAST-ADL

- EAST-ADL provides support for hazard analysis and assignment of ASILs
- Hazards link to the error model, allowing them to be used in safety analysis
- Safety requirements are traceable across EAST-ADL layers
ASILs in EAST-ADL

- Hazard Analysis performed on vehicle feature level
 - ASILs are assigned to Hazardous Events
- Initial safety analysis carried out on later levels
 - FTA and/or FMEA can be applied on FAA/FDA models
 - Detailed information about failure modes is unnecessary
 - Propagation logic is what matters
 - ASIL decomposition & allocation can then take place
- Can also make assumptions about ASILs for SEooC
 - Safety Element out of Context – no context in which to perform hazard analysis
FTA and ASIL decomposition

- System failure logic is represented by fault trees
- Results of fault tree analysis (FTA) are cut sets
- Cut sets represent combinations of failures that can cause a hazard
- ASILs for that hazard can therefore be decomposed to the failures in the cut sets
ASIL decomposition algorithm

- ASILs from top level failures are decomposed across the cut sets that cause those failures
 - Multiple failure events in a cut set mean all must occur to cause the system failure
- Decomposition of ASILs is based on ASIL algebra:
 - Each ASIL is worth one point (ASIL A = 1, ASIL B = 2 etc)
 - Sum of constituents should be \(\geq \) overall ASIL
 - e.g. if A = 1 and C = 3, then A + A + A = C
- For any given cut set, there are a maximum of \(p = (m + 1)^n \) permutations
 - \(p \) = assignments, \(m = \max \) ASIL, \(n = \) number of events
ASIL decomposition algorithm

- Each cut set is covered by a decomposed ASIL
- Cut sets are iterated and for each one, all permutations of possible ASIL assignments are generated
- Assignments that meet requirements are kept, and those that do not are discarded
- Example: simple function with two system failures (omission + commission) and four basic events

\[
\text{Omission} = \text{FE1 AND FE2} \quad -- \text{Assigned ASIL C}
\]

\[
\text{Commission} = (\text{FE2 AND FE3}) \text{ OR FE4} \quad -- \text{Assigned ASIL D}
\]
ASIL decomposition algorithm

- All possible assignments for Omission (ASIL C)

<table>
<thead>
<tr>
<th>FE1/FE2</th>
<th>FE1/FE2</th>
<th>FE1/FE2</th>
<th>FE1/FE2</th>
<th>FE1/FE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>QM/QM</td>
<td>A/QM</td>
<td>B/QM</td>
<td>C/QM</td>
<td>D/QM</td>
</tr>
<tr>
<td>QM/A</td>
<td>A/A</td>
<td>B/A</td>
<td>C/A</td>
<td>D/A</td>
</tr>
<tr>
<td>QM/B</td>
<td>A/B</td>
<td>B/B</td>
<td>C/B</td>
<td>D/B</td>
</tr>
<tr>
<td>QM/C</td>
<td>A/C</td>
<td>B/C</td>
<td>C/C</td>
<td>D/C</td>
</tr>
<tr>
<td>QM/D</td>
<td>A/D</td>
<td>B/D</td>
<td>C/D</td>
<td>D/D</td>
</tr>
</tbody>
</table>

- Blue ones do not meet requirements – discard
- Black ones are optimal – precisely meet requirements
- Red ones are potentially redundant (overly strict) but still need to be explored further
ASIL decomposition algorithm

- For each valid assignment for Omission (ASIL C), we test possible assignments for Commission (ASIL D)

 - FE4 can only be ASIL D (single cause)
 - FE2 is set by Omission, so does not change with FE3
 - To be accepted, FE2 + FE3 must be ASIL D

Assignments Found:
- QM : C : A : D
- QM : C : B : D
- QM : C : C : D
- QM : C : D : D
- A : B : B : D
- A : B : C : D
- A : B : D : D
- B : A : C : D
- B : A : D : D
- C : QM : D : D
ASIL decomposition algorithm

- 65 results, of which all but 5 are redundant

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QM:C:B:D</td>
<td>A:B:C:D</td>
<td>B:A:D:D</td>
<td>C:A:C:D</td>
<td>D:A:C:D</td>
</tr>
<tr>
<td>QM:C:C:D</td>
<td>A:B:D:D</td>
<td>B:B:B:D</td>
<td>C:A:D:D</td>
<td>D:A:D:D</td>
</tr>
<tr>
<td>QM:C:D:D</td>
<td>A:C:A:D</td>
<td>B:B:C:D</td>
<td>C:B:B:D</td>
<td>D:B:B:D</td>
</tr>
<tr>
<td>QM:D:QM:D</td>
<td>A:C:B:D</td>
<td>B:B:D:D</td>
<td>C:B:C:D</td>
<td>D:B:C:D</td>
</tr>
<tr>
<td>QM:D:A:D</td>
<td>A:C:C:D</td>
<td>B:C:A:D</td>
<td>C:B:D:D</td>
<td>D:B:D:D</td>
</tr>
<tr>
<td>QM:D:B:D</td>
<td>A:C:D:D</td>
<td>B:C:B:D</td>
<td>C:C:A:D</td>
<td>D:C:A:D</td>
</tr>
<tr>
<td>QM:D:C:D</td>
<td>A:D:QM:D</td>
<td>B:C:C:D</td>
<td>C:C:B:D</td>
<td>D:C:B:D</td>
</tr>
<tr>
<td>QM:D:D:D</td>
<td>A:D:A:D</td>
<td>B:C:D:D</td>
<td>C:C:C:D</td>
<td>D:C:C:D</td>
</tr>
<tr>
<td>A:D:B:D</td>
<td>B:D:QM:D</td>
<td>C:C:D:D</td>
<td>D:C:D:D</td>
<td></td>
</tr>
<tr>
<td>A:D:C:D</td>
<td>B:D:A:D</td>
<td>C:D:QM:D</td>
<td>D:D:QM:D</td>
<td></td>
</tr>
<tr>
<td>A:D:D:D</td>
<td>B:D:B:D</td>
<td>C:D:A:D</td>
<td>D:D:A:D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B:D:C:D</td>
<td>C:D:B:D</td>
<td>D:D:B:D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B:D:D:D</td>
<td>C:D:C:D</td>
<td>D:D:C:D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C:D:D:D</td>
<td>D:D:D:D</td>
<td></td>
</tr>
</tbody>
</table>
ASIL decomposition algorithm

- Can use heuristics to sort the remainder

- Using sum of ASIL values (i.e. A=1, B=2, C=3, D=4):
 - QM:C:A:D = 8
 - QM:D:QM:D = 8
 - A:B:B:D = 9
 - B:C:A:D = 10
 - C:QM:D:D = 11

- Using increasing points for ASIL values (A=1, B=10, C=100 etc):
 - A:B:B:D = 1021
 - QM:C:A:D = 1101
 - B:C:A:D = 1111
 - QM:D:QM:D = 2000
 - C:QM:D:D = 2100

- This helps the analyst decide on the preferred option
- There may not be a single ‘best’ option
- More likely to be trade-offs between equivalent options
 - Higher ASIL for one element means lower ASIL on another, and vice versa
ASIL assignment

• Once an ASIL assignment for the failure modes has been chosen, ASILs can also be assigned to other parts of the model
 • Can assign ASILs to input and output errors, to trace the propagation of failures
 • Can also assign ASILs to ports/interfaces of a component or function
 • ASILs can also be assigned to entire components/functions or subsystems
 • This also allows for ASILs to be assigned to process faults of functions
Optimisation of ASILs

- Automatic ASIL decomposition is a good candidate for automatic optimisation algorithms
- When there are lots of possible assignments, exhaustive search becomes impractical
 - Exhaustive search is subject to combinatorial explosion
 - For a single 4 event cut set, there are 625 permutations
- In these cases, optimisation could be used
 - Objective is to meet requirements at lowest cost (i.e. lowest total ASIL heuristic value)
 - Optimisation algorithms are more scalable as they are designed to explore large search spaces efficiently
Future tool integration

- Plan for rest of MAENAD is to integrate this technology into tools
 - HiP-HOPS provides the analysis capability
 - Papyrus provides modelling capability
 - Intention is to start ASIL decomposition directly from Papyrus as with other analysis plugins

- Some challenges still remain
 - Find a more scalable approach e.g. with optimisation
 - Could use a hybrid method:
 - Exhaustive algorithm for smaller models
 - Optimisation for larger models
 - How to present results and where to store them in the model
Summary

- EAST-ADL support for hazard analysis and ASIL decomposition is important to conform to ISO 26262
- But ASIL decomposition is difficult to perform manually
- Prototype version implemented in HiP-HOPS
- Allows more rapid determination of ASIL assignments
- Can use optimisation to increase efficiency