

Grant Agreement 260057

Model-based Analysis & Engineering of Novel Architectures

for
Dependable Electric Vehicles

Report type Deliverable D5.2.1
Report name MAENAD Analysis Workbench

Dissemination level PU
Status Intermediate
Version number 3.0
Date of preparation 2013-03-28

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 2 (43)

Authors

Editor E-mail
Carl-Johan Sjöstedt carlj@md.kth.se

Authors E-mail

Carl-Johan Sjöstedt carlj@md.kth.se

Matthias Biehl biehl@md.kth.se

Hans Blom hans.blom@volvo.com

Mark-Oliver Reiser mark-oliver.reiser@tu-berlin.de

Sara Tucci-Piergiovanni sara.tucci@cea.fr

Martin Walker martin.walker@hull.ac.uk

Frank Hagl frank.hagl@continental-corporation.com

De-Jiu Chen

Henrik Lönn

chen@md.kth.se

henrik.lonn@volvo.com

The Consortium
Volvo Technology Corporation (S) Centro Ricerche Fiat (I)

Continental Automotive (D) Delphi/Mecel (S) 4S Group (I)

ArcCore AB (S) MetaCase (Fi) Systemite (SE) CEA LIST (F)

Kungliga Tekniska Högskolan (S) Technische Universität Berlin (D) University of Hull (GB)

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 3 (43)

Revision chart and history log

Version Date Reason
1.0 2011-05-31 First release

2.0

3.0

2012-08-31

2013-03-20

Second release

Third release

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 4 (43)

Table of contents

Authors .. 2	

Revision chart and history log ... 3	

Table of contents ... 4	

1	
 Introduction ... 6	

2	
 The components of the MAENAD Analysis Platform .. 7	

2.1	
 AUTOSAR Gateway ... 8	

2.1.1	
 Current status .. 8	

2.1.2	
 Input models for the AUTOSAR Gateway ... 8	

2.1.3	
 Future plans .. 13	

2.1.4	
 Requirements from WT2.1: Identifications of needs ... 13	

2.2	
 Timing Analysis .. 14	

2.2.1	
 Current status .. 14	

2.2.2	
 Input models for the Timing Analysis plug-in .. 14	

2.2.3	
 Future plans .. 20	

2.3	
 Simulink Gateway .. 22	

2.3.1	
 Current status .. 22	

2.3.2	
 Input models for the Simulink Gateway ... 23	

2.3.3	
 Future plans .. 24	

2.3.4	
 Requirements from WT2.1: Identifications of needs ... 24	

2.4	
 HiP-HOPS Gateway ... 25	

2.4.1	
 Papyrus Plugin .. 25	

2.4.2	
 EPM Plugin ... 25	

2.4.3	
 Current status .. 26	

2.4.4	
 Input models for the HiP-HOPS Gateway ... 26	

2.4.5	
 Future plans .. 26	

2.4.6	
 Requirements from WT2.1: Identifications of needs ... 27	

2.5	
 Architecture optimization and configuration ... 28	

2.5.1	
 Current status .. 28	

2.5.2	
 Input models for the OptiPAL tool ... 29	

2.5.3	
 Presentation of Optimization Results in OptiPAL .. 31	

2.5.4	
 Future plans .. 32	

2.5.5	
 Requirements from WT2.1: Identifications of needs ... 33	

2.6	
 ASIL allocation with EPM/HiP-HOPS ... 34	

2.6.1	
 Current status .. 34	

2.6.2	
 Input Models for ASIL allocation ... 34	

2.6.3	
 Future Plans .. 36	

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 5 (43)

2.6.4	
 Requirements from WT2.1: Identification of needs ... 36	

2.7	
 UPPAAL&Spin Gateways .. 37	

2.7.1	
 Current Status ... 37	

2.7.2	
 Input Models for the UPPAAL/Spin Gateways .. 37	

2.7.3	
 Future plans .. 38	

2.7.4	
 Requirements from WT2.1: Identification of needs ... 38	

2.8	
 Modelica Exchange .. 39	

2.8.1	
 Current status .. 39	

2.8.2	
 Input models for Modelica Exchange .. 39	

2.8.3	
 Future plans .. 40	

2.8.4	
 Requirements from WT2.1: Identifications of needs ... 40	

2.9	
 Functional Mock-up Unit Import ... 41	

2.9.1	
 Current status .. 41	

2.9.2	
 Input models for FMU import ... 41	

2.9.3	
 Future plans .. 41	

2.9.4	
 Requirements from WT2.1: Identifications of needs ... 41	

3	
 References .. 43	

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 6 (43)

1 Introduction

Deliverable D5.2.1 consists of:

• The plugins and tools that make up the MAENAD analysis workbench (MAW)

• This document is providing references and short descriptions of the tools in the MAW.

The MAW consists of software developed to provide support for modelling and analysis, based on
specifications of WT3.x. One objective is to validate the analysis concepts. The MAW will be made
public in order to make the analysis concepts more accessible and understandable.

For each plugin/tool, the sections Current status, Input Models, Future plans and Requirements are
available. The Input model sections describe how a model needs to be set up to work with the tool,
which could also be seen as a test case for the tool. The Requirements sections describe what
project and language requirements that the plugin/tool fulfils.

The main target of MAW is the MAENAD Modeling Workbench, D5.1.1, but as it will support
exchange to other tools using the EAXML format, some adaptors are based on other tools, mainly
MetaEdit+.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 7 (43)

2 The components of the MAENAD Analysis Platform

Some of the plugins were developed throughout the ATESST [1], ATESST2 [1] and EDONA [2]
projects, and will be updated during the MAENAD project, because of new releases of the
MAENAD modelling workbench, and new releases of the profile. There will also be new plugins, for
the interchange of EAST-ADL models using an exchange format, and for exchange with Modelica
and MODELISAR FMU:s.

 Main
developer

Overview

AUTOSAR Gateway CEA Provide an enhanced transformation from EAST-ADL2
design architecture to AUTOSAR compliant software
architecture, based on the ARTOP framework.

Timing Analysis –
Qompass Tool

CEA Provides support for early-stage timing analysis of EAST-
ADL models

Simulink Gateway KTH Provides input/output facilities with Simulink to enable
simulation.

HiP-HOPS Gateway KTH Builds on previous results, expanding analysis capability
and optimization engine of HiP-HOPS, and enhancing the
feedback of FMEA/FTA in the design process.

Architecture
optimization and
configuration

TUB To achieve multi-objective optimization, the prototype tool
OptiPAL has been developed, based on the EPM platform.

ASIL allocation with
EPM/HiP-HOPS

UoH ASIL allocation with EPM/HiP-HOPS

UPPAAL&SPIN
Gateway

KTH Analysis of behavioural constraints using the model
checkers UPAAL and SPIN.

Modelica Exchange KTH Using Modelica together with EAST-ADL for behavior
analysis.

FMU Import VTEC Generate EAST-ADL FAA models from Functional Mock-
up Units.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 8 (43)

2.1 AUTOSAR Gateway

The AUTOSAR gateway builds on results from EDONA and ATESST2 projects to provide an
enhanced transformation from the EAST-ADL design architecture to AUTOSAR vehicle
architecture design and initial system configuration. The gateway is based on the ARTOP
framework, which is an implementation of common base functionality for AUTOSAR development
tools, available free of charge for AUTOSAR members [5]. The transformation takes as input the
EAST-ADL Design Level with functional description, hardware description and allocation
information and generates a tentative AUTOSAR software architecture, a hardware topology and
mapping constraints (coming from EAST-ADL allocation information). The generation of the
tentative software architecture is based on mappings between EAST-ADL functions and
AUTOSAR software components/runnables that fit in the EAST-ADL Implementation Level.

2.1.1 Current status

The first version of the AUTOSAR gateway has been released at M12. This version was based on
the one developed in the EDONA project and then it had been ported to the new Papyrus MDT
platform and 2.1.9 EAST-ADL profile version.

As previously planned, a new version of the AUTOSAR gateway has been released at M24. In this
version the transformation towards the AUTOSAR implementation architecture relies on an
AUTOSAR UML profile (subset of AUTOSAR centred on relevant templates: software component,
system and ECU resource namely). As a result, the transformation from EAST-ADL design
architecture to AUTOSAR vehicle design architecture/system configuration produces UML profiled
models.

AUTOSAR gateway implements also export functionality from AUTOSAR-UML profiled models to
AUTOSAR XML.

2.1.2 Input models for the AUTOSAR Gateway

As specified before, AUTOSAR Gateway servers to generate AUTOSAR model (UML model
profiled with AUTOSAR concepts) and out of the last, AUTOSAR Gateway can generate arxml file.
Therefore this subsection will be divided accordingly to this two-step generation process.

2.1.2.1 EAST-ADL2 to AUTOSAR model

Generation of AUTOSAR model consists of three phases. These are generation of the Application
View, the Topology View and the Mapping View. The first one contains specification of the
software components types and their prototypes. Topology View relates to the hardware topology.
Mapping View encompasses the definition of a mapping, i.e. software components to ECUs
allocation. Proper and complete generation of each view depends on the information included in
the EAST-ADL2 model. Let us consider the EAST-ADL2 model as composed out of three
packages representing the functional architecture (FDA – Functional Design Architecture),
hardware topology (HDA – Hardware Design Architecture) and Allocation, i.e. mapping of
functional entities onto the hardware topology. Figure 1 represents general dependencies of the
generation results from the information included in the EAST-ADL2 model. Namely, in order to
generate complete and correct Application View it is necessary to provide FDA, HDA and
Allocation. This is a consequence of the approach used to generate software architecture. Namely,
all the atomic functions of the same composite function and allocated on the same ECU are
transferred to one atomic software component type. The last contains the runnable entities, where
each runnable entity is generated from one atomic function. In general the way in which software
architecture is generated, i.e. software component types, their prototypes and runnable entities, is

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 9 (43)

influenced by the compositional structure of the functional model (FDA) but also the way in which
atomic functions are allocated on the nodes. Therefore all three models, i.e. FDA, HDA and
Allocation are necessary to generate Application View model.

FDA HDA Allocation

Application
View

Topology
View

Allocation
View

Depends

Figure 1. Dependencies in the Generation of the AUTOSAR Model from the EAST-ADL2
Model

Generation of the Topology View depends only on the information included in the HDA.
Accordingly, the absence or presence of the FDA model or Allocation model has no influence on
the Topology View.

The last Allocation View depends on FDA, HDA and Allocation model. This dependency is rather
obvious. If the specification of FDA, HDA and Allocation is not complete, as explained before,
complete and correct Application View cannot be generated, hence there are no entities to
allocate. In addition if an HDA specification does not exist, there are no hardware entities on which
the software components can be allocated. Lastly, EAST-ADL2 Allocation model specifies
functional allocation and by tracing the relation between functions and the produced software
components, using the EAST-ADL2 Allocation model (described by UML dependencies), allocation
of software components can be inferred.

2.1.2.2 AUTOSAR model to arxml

Generation of the arxml file is relatively simpler than the generation of AUTOSAR model from
EAST-ADL2. This is a consequence of using one-to-one transformation, i.e. each entity from the
AUTOSAR model has one, corresponding entity in the arxml file. This was not the case for the
AUTOSAR model generation, in which the relation between the EAST-ADL2 model and AUTOSAR
elements is not that obvious, due to the different concepts present in different languages.

In the context of the implementation, similarly to the generation of AUTOSAR model, generation of
arxml file is divided on few phases, five in this case. They are as follows:

• Phase 1: packages generation: all the packages and sub-packages, present in the
AUTOSAR model are reflected in the arxml file.

• Phase 2: components generation: all the software component types and software
component prototypes has their counterparts in the arxml file. Also in this phase, ports and
their interfaces are generated.

• Phase 3: connectors generation: this phase generates connectors communicating ports of
different software components.

• Phase 4: hardware platform generation: this phase can be divided into three sub-phases:

o Phase 4.1: generation of ECUs

o Phase 4.2: generation of Sensors and Actuators

o Phase 4.3: generation of hardware pins

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 10 (43)

• Phase 5: allocation generation: this phase produces the specification of software
components to ECUs mapping.

All of these phases are fully independent and hence failure in the generation of one of them does
not influence other phases. If the generation of arxml file, directly follows the generation of the
AUTOSAR model using the AUTOSAR Gateway, the arxml file will be produced without any
problems. However the idea of the two-fold process, i.e. (EAST-ADL2 model to AUTOSAR model
and AUTOSAR model to arxml) was to enable the designer to change generated implementation
model at the modelling level, not at the level of the arxml file. Hence, while doing the specific
changes at the AUTOSAR model level, designer can violate few important rules that have to be
respected.

The entire input model needs to be structured into a way presented on the Figure 2. Arxml file
generator searches first for the package called Technical View, and then depending on the
generation phase it searches for the corresponding elements either in the Application View or the
Topology View or the Mapping View package. For instance if this is “Components generation”
phase it will look for the software component types and prototypes in the Application View
package. Otherwise if there is software component type or prototype specified outside of this
package, no corresponding entity in the arxml file will be generated. Other phases are run
analogously. Below is a set of general rules for the appropriate containment of AUTOSAR model
elements within the three mentioned packages, so their corresponding arxml file entities will be
generated.

Application View: this package should contain all software component types, such as
ApplicationSwComponentType, SensorActuatorSwComponentType or
CompositionSwComponentType. Then all the prototypes, i.e. SwComponentPrototypes should be
specified as owned attributes of the composition software component (see Figure 3).
InternalBehaviour should be specified as an owned behaviour of a software component type. Ports
of SwComponentTypes should be specified as owned attributes (see Figure 5). Lastly, port
connectors are specified as owned connectors of the software composition type (see Figure 6). In
general, all the information needed for the phase 2 and 3 should be included in the Application
View.

Figure 2. Structure of the AUTOSAR model recognized by the arxml file Generator

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 11 (43)

Figure 3. Specification of Software Component Prototypes as Owned Attributes of a
CompositionSwComponentType

Figure 4. InternalBehavior of SwComponentType specified as an ownedBehavior

Figure 5. Port specified as Owned Attribute of Software Component Type

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 12 (43)

Figure 6. Port connectors specified as Owned Connectors of Composition Software Type

Phase 4 relates to the Topology View and hence all the elements that refer to hardware should be
specified within this package. These are sensors and actuators (SensorHw, ActuatorHw), ECUs
and their occurrences, communication connectors, hardware pins, communication clusters (e.g.
FlexrayCluster) and physical channels (e.g. EthernetPhysicalChannel). Few important things
should be kept in mind concerning the Topology View. First, AUTOSAR stereotypes SensorHw
and ActuatorHw are applicable on Class and represent the sensor/actuator type. The occurence of
specific sensor/actuator is specified as a Property, but no stereotype is applied. This comes from
the fact that no specific element exists in AUTOSAR to model the instance of either sensor or
actuator, while EAST-ADL2 has the HardwareComponentPrototype. The Property representing the
occurrence of a specific sensor/actuator should be present as an owned attribute of the
sensor/actuator type. Secondly occurrences of ECUs, i.e. ECUInstance are specified as owned
attributes of their ECU type. Next, communication connectors of ECU instances are specified as
owned attributes of their ECU type. Lastly, concerning the global communication, i.e.
communication buses, they are specified using the AUTOSAR stereotypes such as CanCluster (for
the CAN bus), FlexRayCluster (for the FlexRay bus), etc. and their corresponding physical
channels, such as CanPhysicalChannel (for the CanCluster), etc. The physical channel is specified
as the UML Connector stereotyped with the PhysicalChannel stereotype. The physical channel
should be within the owned connectors of the Cluster, present in the model as the UML Class (see
Figure 7).

Figure 7. Specification of a Cluster and corresponding Physical Channel as an Owned
Connector.

The last, Phase 5 requires only that the specification of software allocation is contained in the
Mapping View package. See example on the Figure 8.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 13 (43)

Figure 8. Specification of a Mapping View with the Owned Comments modeling allocation of
Software Components

2.1.3 Future plans

Beyond M30 we will proceed to the AUTOSAR gateway assessment considering feedback from
MAENAD users.

2.1.4 Requirements from WT2.1: Identifications of needs

The AUTOSAR gateway is mentioned in the following requirement:

DOW#0111: The SWC Synthesis (FDA-IL) shall be modelled in MAW-AR Gateway plugin [4].

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 14 (43)

2.2 Timing Analysis

At the beginning of the project the purpose of the Timing Analysis plug-in was centred on the idea
of providing schedulability analysis of EAST-ADL models. Beyond M12, Timing Analysis for EAST-
ADL models has been refined [6]. The following timing analyses have been identified as best-
suited to support EAST-ADL Design level models (as documented in D3.1.1):

Early Stage Schedulability Analysis. The allocation model of EAST-ADL defines on which ECUs,
functions will be executed and on which buses, communication between functions will take place.
Based on this information, the following two interesting metrics, relevant from a schedulability point
of view, can be considered:

• Resource Utilization. Resource utilization is a function of (i) the function’s activation rate
and (ii) a time budget representing the time an execution/communication will take. Based
on utilization of single resources, other related interesting metrics can also be extracted, as
load distribution and function/signals extensibility (function of processors/bus slacks).

• Interference Time: represents the waiting time to access shared resources (CPU/Bus). This
delay is caused by concurrent functions/signals that are allocated to the same
execution/communication node. Small interference is desirable to minimize end-to-end
latency.

Schedulability analysis. Schedulability analysis is applied for the special case of linear chains of
activations running on a mono-processor system and when chain rates are harmonic. The task
model is generated automatically. This generation is transparent to the user. Once the task model
is obtained, a response time will be computed for each end-to-end chain (thread) trough Rate
Monotonic Analysis [6].

2.2.1 Current status

Let us be reminded that at the beginning of the MAENAD project the analysis engine should have
been provided as a third-party tool. On the other hand, after EDONA and ATESST2, CEA worked
on the implementation of schedulability analysis algorithms as part of its research activities (not
included in the MAENAD project) in its own MARTE-based plug-in called Qompass. This timing
analysis support was not completely compliant with timing analyses identified as best-suited for
EAST-ADL design models (Section 2.2). Moreover, in order to directly analyse EAST-ADL models,
a transformation between EAST-ADL profile models and entry models for Qompass was needed.

During year 2 the Qompass timing support has been adapted/enhanced in order to support EAST-
ADL design-level timing analyses. An EAST-ADL/Qompass transformation has been developed as
well. A new version of the Timing Analysis plug-in, has been released at M24 embedding these
new features.

At the end of year 2, the input model for the Qompass tool assumed only linear event chains,
where each chain contained a linear sequence of functions and where neither functions nor stimuli
could belong to more than one event chain. In order to support the analysis of the brake-by-wire
(BBW) system, an extension was needed, as the BBW owns functions belonging to multiple event
chains. At the current state this extension has been implemented and now Qompass can run on
the BBW model.

2.2.2 Input models for the Timing Analysis plug-in

In this section we present the EAST-ADL methodology needed to build a well-formed model for
timing analysis. Timing analysis needs a minimal amount of information that must be specified. The

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 15 (43)

goal of timing analysis is to give estimation of the quality of an allocation of functions to hardware
nodes. Indeed, the usage of concrete resources for the execution of functions and communication
among functions has a huge impact on the ‘timing’ aspect of the application, i.e. the delay for an
expected response to be produced. The main issue here is that in the general case resources will
be shared among multiple functions. The way in which resources are shared determines the time
for a given function to complete. From these considerations it is clear that relevant information for
the timing analysis is: the chains of function activations that compose a system response and
subject to a deadline; the allocation of functions to nodes; the estimation of the resource demand
of each function, the maximal utilization capacity of resources.

In the reminder of this section we describe how to specify this information in EAST-ADL using a
running example, the BBW model. In Figure 9 an excerpt of the functional design architecture of
the BBW is shown. All these functions belong to system responses subject to a hard deadline.

In order to define a system response, i.e. a path of function activations, from a stimulus to a
response, we need to specify an EventChain. Figure 10 shows the event chain whose stimulus is
the ‘BrakePedalSensorInputPortEvent’ EventFunctionFlowPort, related to the ‘PositionIn’
FunctionPort of the ‘pBrakePedalSensor’ FunctionPrototype (see Figure 11) and whose response
is the ‘BrakeActuatorFLOutputPortEvent’ EventFunctionFlowPort, related to the ‘BrakeTorq’
FunctionPort of the ‘pBrakeActuator_FL’ FunctionPrototype (see Figure 12).

Note that it is mandatory for an EventFunctionFlowPort that both the port and port_path attributes
are specified.

Note that it is mandatory for the event chain to have exactly one stimulus and exactly one
response.

Once an event chain has been specified like that, the entire path can now be unambiguously
derived only if the graph of functions is a directed acyclic graph without cycles. In this particular
case this means that all ports are unidirectional, with the ‘PositionIn’ FunctionPort with
direction=’in’ and the BrakeTorq FunctionPort with direction= ‘out’. Note that it is mandatory to
remove all the bidirectional function ports to run the transformation and the analysis.

It is also mandatory that each stimulus is generated by a unique source function.

Figure 9. Excerpt of the Functional Design Architecture

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 16 (43)

Figure 10. Example of Event Chain

Figure 11. Stimulus Specification

Figure 12. Response Specification

In order to characterize an event chain in terms of timing properties, a number of constraints must
be specified, as follows:

• Periodic Constraint, for the stimulus of each event chain; it specifies the arrival period for
the stimulus;

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 17 (43)

• Reaction Constraint for the entire event chain; it specifies the relative deadline for the
execution of all functions belonging to the path identified by the event chain;

• Execution Time Constraint for each function in the path of the event chain; it specifies the
worst case execution time for the function to be executed as if it were executed in isolation
on the resource;

Note that the specification of these properties is not mandatory, as the Qompass tool allows for
specifying this information directly in the MARTE model, right after the transformation EAST-
ADL/Qompass.

The specification of a periodic constraint is shown in Figure 13. An element must be created while
specifying two attributes: period and event.

In order to set the period, a TimeDuration element must be previously defined. The TimeDuration
element must have the attribute value specified (see Figure 14). This value is the actual period for
the constraint.

In order to set the event the constraint refers to, the event attribute must be set. Figure 13 shows
that the constraints refers to the event ‘BrakePedalSensorInputPortEvent’, which is the stimulus of
the event chain shown in Figure 10.

Figure 13. Periodic Event Constraint Specification

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 18 (43)

Figure 14. Time Duration Specification

The specification of a Reaction Constraint is shown in Figure 15. Two attributes have to be
specified here, scope and upper. Scope refers to the event chain subject to the constraint, in our
case the event chain shown in Figure 10. Upper is again a TimeDuration element, which must
specify the value of the deadline.

Figure 15. Reaction Constraint Specification

The specification of an Execution Time Constraint is shown in Figure 16. Two attributes have to be
specified here, targetDesignFunctionPrototype and upper. The targetDesignFunctionPrototype
attribute specifies the function (prototype) the execution time constraint refers to. Upper is again a
TimeDuration element, which must specify the value of the worst case execution time of the
function prototype.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 19 (43)

Figure 16. Execution Time Constraint Specification

In order to specify the concrete resources for the execution of functions, allocations must be
specified. Once again allocation information is optional, in the sense that allocations can be
alternatively specified right after the transformation EAST-ADL/Qompass. Figure 17 shows an
allocation of all the functions belonging to the functional design architecture of Figure 9.

Figure 17. Allocation

In this UML diagram, the FunctionAllocation is represented as a dependency (more technically the
FunctionAllocation concepts extends the UML Dependency metaclass), through a dotted arrow
from the client to the supplier. The two attributes /target (supplier) and /allocatedElement (client)
are derived, i.e. automatically set when the dependency is established.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 20 (43)

In the case the ensemble of functions is allocated on a distributed platform, the topology of the
platform must be specified. In particular the Qompass tool needs to know how nodes are
connected through buses. This information is retrieved using the LogicalBus concept. A logical bus
must be defined, and in particular all the connectors connecting nodes that can communicate
through the bus must be specified in the wire attribute, as shown in Figure 18.

Figure 18. Logical Bus Specification

2.2.3 Future plans

M30 was planned to be the last release for the Qompass plug-in: i in compliance with what has
been planned, the timing analysis can now be applied on the BBW model. This analysis performs
an early stage evaluation of timing properties hold by design level models (see [7]), but response
time analysis is not provided. The Qompass plug-in, in fact, computes response times only for the
mono-processor case (as an implementation model is automatically and transparently generated
from the design model). An update of the plug-in has been scheduled for the end of June providing

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 21 (43)

response time analysis for the distributed case and possible improvements required by MAENAD
users. Requirements from WT2.1: Identifications of needs

The Timing Analysis plugin is mentioned in the following requirement:

DOW#0110: The Timing analysis (DL) shall be modelled in MAW-Timing plugin [4].

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 22 (43)

2.3 Simulink Gateway

During

The Simulink gateway builds on results from the ATESST2 project, a Simulink gateway was
developed, and provides input/output facilities of models with Simulink to enable simulation. The
plugin is divided in two parts (Figure 19):

• A GUI plugin to the MATLAB/Simulink environment, which aids the user in creating models
that conform to the format that is needed to being able to convert it into an EAST-ADL
model.

• An Eclipse plugin, which can convert between the intermediate format of Simulink models
and EAST-ADL models

The MATLAB plugin exports the MATLAB/Simulink models into a custom Ecore-based format. A
subset of Simulink functions is used; only library blocks of subsystems are considered. However,
any Simulink model could be converted into a structure of system reference blocks, without
affecting the model’s simulation behaviour. The GUI plugin for Simulink mentioned above converts
standard Simulink subsystems to system reference blocks, and tags them for conversion to EAST-
ADL by putting them in a “FunctionTypes”-library, and assigning a unique ID, to allow bi-directional
exchange and updates. To include the internal structure of a subsystem, the same pattern is
repeated.

Import works the other way around, FAA FunctionTypes and FunctionPrototypes are imported to
empty library blocks in the “FunctionTypes”-library, and instances of them respectively.

In addition to the above tool MetaCase has developed a Simulink-exchange mechanism for
MetaEdit+, creating .mdl-files. A similar mapping is used as the above mentioned plugin.

With MetaEdit+, KTH has developed another exchange from MetaEdit+ to Simulink and StateFlow,
as a validator for the behavioural annex. Instead of .mdl-files, this plug-in relies on Matlab API for
the creation of Simulink/Stateflow models.

2.3.1 Current status

An effort has been made to port the plugin developed in the ATESST2 project to the new Papyrus
MDT environment. It is possible to run the plugin, but the ATL transformation eventually crashes,
for unknown reasons.

EAST-ADL
Model

Simulink
Metamodel

Simulink

Simulink-like
Metamodel

(Ecore based)

Intermediate
Model API-Calls

conforms
to

EAST-ADL Profile +
UML Metamodel

conforms
to

aligned

M2M
Trafo

Figure 19. Overall design

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 23 (43)

Due to lack of resources from KTH, no further development has taken place, there are no interest
in further developing this plugin.

Simulink exchange has been implemented in MetaEdit+, which could better serve as a
demonstrator for proof-of-concept exchange between Simulink and EAST-ADL.

2.3.2 Input models for the Simulink Gateway

The ME+ plugin by MetaCase for Simulink transformation takes a FAA or a FDA architecture
description as the input model.

The ME+ plugin by KTH for Simulink&Stateflow transformation takes a FAA or a FDA architecture
description, together with the corresponding behaviour constraint annotations, as the input model.

Figure 20. Screenshot of a Simulink export scenario. The exported file defines the commands to
Matlab API for model creation.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 24 (43)

Figure 21. Screenshot of a Simulink export scenario, where the behavioural content of
blocks in Stateflow is added. The exported file defines the commands to Matlab API for
behaviour model creation.

2.3.3 Future plans

KTH is prototyping of behaviour analysis with MATLAB/Simulink using the MetaEdit+ editor, and
exchange mechanism.

2.3.4 Requirements from WT2.1: Identifications of needs

A2#11: A formalized meta-model of the architecture description language shall be developed.
(including structural elements, behavioural description means, models of computations, and
transformation rules to prototype tools and Simulink.)

DOW#0112: The Simulink import-export (FAA, FDA) shall be modelled in MAW-Simulink plugin.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 25 (43)

2.4 HiP-HOPS Gateway

Integrating safety analysis into the development of automotive embedded systems requires
translating concepts of the automotive domain to the generic safety and error analysis domain. We
assume a model-based development process where automotive concepts are represented by the
EAST-ADL2 architecture description language, which supports system design on multiple levels of
abstraction. The concepts of the error analysis domain are represented by the safety analysis tool
HiP-HOPS.

There are two separate interfaces to HiP-HOPS that have been developed. The first is a plugin for
Papyrus, and the second is a plugin for EPM. Both will be briefly described below.

2.4.1 Papyrus Plugin

The first of the two interfaces to HiP-HOPS is a model transformation plugin for the Papyrus tool,
which was primarily developed in ATESST2 by Matthias Biehl from KTH. It has since been updated
again during MAENAD by Nataliya Yakymets of CEA, with additional assistance from KTH. It
allows EAST-ADL models that have been developed in Papyrus to be exported to HiP-HOPS for
analysis.

It is assumed that EAST-ADL models are built using the UML profile. The HiP-HOPS plugin
extensively uses the concepts defined in the EAST-ADL error model, but also other language
constructs from the FDA level.

We automate the translation from EAST-ADL to HiP-HOPS by using model transformations. We
leverage the advantages of different model transformation techniques by decomposing the
translation into two distinct phases, and using an appropriate technique for each phase: A phase
for conceptual mapping between the domains followed by a phase for representing the output in
the desired concrete syntax.

With the resulting tight integration of the safety analysis tool and the model-based development
environment, the automotive safety engineer can perform the safety analysis repeatedly on refined
models with minimal effort. This is compliant with the iterative design activities, which require
starting the analysis after each change in the system design.

The HiP-HOPS Gateway builds on previously developed Model Transformations and Eclipse
Plugin knowledge developed during ATESST2. The process involved some harmonization
between the EAST-ADL error model and the HiP-HOPS metamodel as well, and led to the
development of multi-perspective analysis capabilities in HiP-HOPS.

2.4.2 EPM Plugin

The second EAST-ADL gateway to HiP-HOPS is an interface developed for the EPM tool by Mark-
Oliver Reiser at TUB. This also originally arose from near the end of the ATESST2 project, where it
was needed to be able to perform a HiP-HOPS safety analysis on a demonstrator model that only
existed in EPM. It has since been extended further during MAENAD in parallel to the Papyrus
plugin.

Unlike the Papyrus interface, which exports to HiP-HOPS via a model transformation engine, the
EPM plugin performs a simpler export of only the relevant error model information to construct the
HiP-HOPS input XML file. Because this does not rely so much on the EAST-ADL metamodel, it is
less prone to becoming out of date due to version changes in the metamodel (whereas the
Papyrus plugin would potentially need updating with each change).

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 26 (43)

The range of information EPM can export to HiP-HOPS has been considerably expanded during
MAENAD, also serving as the basis for the ASIL decomposition tool support, and further
extensions are planned for the future.

2.4.3 Current status

The Papyrus plugin is updated to support EAST-ADL models built using the UML profile version
2.1.10. It uses the concepts defined in the EAST-ADL error-model, but also other language
constructs from the FDA level. Core functionality is working, including HW-SW allocation.

• Update of the plugin to work with the current version of Eclipse Indigo

• Update of the plugin to work with the current version of Papyrus MDT 0.8.2

• Update of the plugin to work with the current version of the EAST-ADL Profile 2.1.10

• Update of the test model for the current version of Papyrus

The EPM plugin is also being updated to serve as the basis of ASIL decomposition export to HiP-
HOPS.

2.4.4 Input models for the HiP-HOPS Gateway

An example input model for the Papyrus HiP-HOPS Gateway is available on the repository below.
Example EPM models will also become available in due course.

2.4.5 Future plans

The Papyrus HiP-HOPS gateway has been made public on the link below. It is released under the
Eclipse Public License. No further development or maintenance is planned by KTH.

https://code.google.com/p/east-adl-safety-analysis/

As stated above, the EPM plugin is still being updated and developed further to increase the range
of information it can export to HiP-HOPS, and thus increase the range of analyses available to
users. See also section 2.6 below for more information.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 27 (43)

2.4.6 Requirements from WT2.1: Identifications of needs

UOH#0003: The HiP-HOPS analysis tool should support any ISO 26262 or related concepts (such
as ASIL decomposition) necessary to allow ISO-compatible dependability analysis of EAST-ADL
models.

UOH#0004: EAST-ADL and HiP-HOPS should be able to intercommunicate by means of model
transformations provided by a dependability plugin in the MAENAD Analysis Workbench (MAW).
Furthermore it should be possible to import or store the results from HiP-HOPS in the Workbench
and/or the EAST-ADL model, which will require establishing some form of (perhaps XML based)
interchange format.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 28 (43)

2.5 Architecture optimization and configuration

The architectural optimization & configuration capabilities to be developed in MAENAD build upon
several tools and plugins, including CVM (and the corresponding variability management plugin
from ATESST2), HiP-HOPS (and its associated plugin), and timing analysis tools like MAST (and
associated plugin(s)). These tools need to be interfaced with an optimization engine for fully multi-
objective optimization of EAST-ADL models to be possible.

2.5.1 Current status

A proposal for an EAST-ADL optimization architecture was developed over the course of the
second year of MAENAD, building upon initial ideas from the meeting in York May 2011. This
architecture is shown below:

The optimisation architecture is described further in D3.2.1, but is intended to serve as a blueprint
for the implementation of tool support for the optimisation process. It consists of several major
elements, briefly described below:

• Optimization Space Definition Module (OSDM)

This module takes a variability-rich EAST-ADL model and generates a 'master encoding hierarchy',
which is a hierarchical key to the design space represented by the model variability. In practice,

Figure 22. Optimisation Architecture

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 29 (43)

this takes the form of a feature tree (with slight modifications), and can therefore be generated by
variability tools like CVM.

• Central Optimization Engine (COE)

The COE is the driver of the optimization process. It is responsible for exploring the optimization
design space on the basis of heuristic algorithms such as genetic algorithms. It generates an
encoding for a particular design candidate, which is then resolved by the VRM (see below) and
evaluated by analysis plugins to determine its relative score in each of the objectives being
optimized (e.g. reliability, performance, cost, energy consumption etc.). Optimal candidates are
preserved while sub-optimal designs are discarded. Once the process is complete, the COE will
generate a report containing the set of optimized design candidates.

• Variability Resolution Mechanism (VRM)

The COE does not manipulate the EAST-ADL model directly. Instead, it modifies encodings
(essentially feature trees), and then passes each encoding to the VRM, which is responsible for
resolving the variability in the original model according to the encoding in order to produce a new
model — a design candidate — that can then be analysed and evaluated.

• Analysis modules

For each objective being analysed, there needs to be a corresponding analysis module. The
intention is that these analysis modules can be either external tools (such as HiP-HOPS or timing
analysis tools like Qompass) or plugins written for the modelling/analysis environment (e.g.
Papyrus, MetaEdit+, EPM etc.). The optimisation architecture does not necessarily interact with
them directly; instead there should be a common approach, implemented by 'wrapper' objects if
necessary, to present a consistent interface to the analysis modules. The hope is that this will allow
new analysis modules and thus new objective types to be added (or removed) from the
optimization process without requiring modification of the main optimization elements (i.e., the
OSDM, COE and the VRM).

Scope has been left for product line optimisation to be added at a future date, although this will
require additional complexity in the analysis wrappers, as each analysis type may have to function
differently to achieve optimisation of product lines (e.g. the results of an unavailability analysis on a
product line may just be the maximum probability, while the results of a cost analysis are likely to
be a sum of weighted costs; the result is therefore heavily dependent on the type of analysis).

An initial prototype tool, OptiPAL, was developed by TUB and builds upon the EPM platform. It
implements both the OSDM and VRM as part of the existing CVM plugin and also includes a new
prototype COE. The COE is presently only a simple experimental version and does not implement
the full genetic algorithm for optimization yet, but it does allow for generation of different encodings
and thus allows the main optimization loop to take place. Analysis is provided by an OptiPAL cost
analysis plugin (which currently only does simple cost summations) and a bridge to the HiP-HOPS
safety analysis tool for dependability analysis via FTA.

OptiPAL is primarily intended as a proof of concept and as a way of testing out the optimization
concepts on test models, to provide feedback to facilitate further development of the optimization
architecture concept. Should it prove successful, however, it may evolve into a more fully functional
optimization tool.

2.5.2 Input models for the OptiPAL tool

As a basis for the implementation of the optimization prototype called OptiPAL, the EPM
component editor has been chosen. While this editor implements only a subset of EAST-ADL, it
provides a good basis for the optimization prototype because it already contains full support for
variability management and configuration (making use of the CVM framework) and the optimization
architecture relies on variability modelling concepts for defining the optimization space, as detailed

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 30 (43)

above. In addition, EPM provides flexible extension mechanisms that allows for a tight integration
of the OptiPAL prototype with the basic modelling capabilities of EPM.

The input for an optimization with OptiPAL can be summarized as follows:

1. A variant-rich EPM model. System variations defined in this model comprise (a) product line
variability and (b) design space variability. For the purpose of optimization, the second form
of variability defines the optimization space while the first form requires special treatment
during optimization. For more details refer to deliverable D3.2.1.
For the purpose of the OptiPAL prototype and EAST-ADL validation within the MAENAD
project, this EPM model can be perceived as an EAST-ADL model, because the EPM
meta-model is sufficiently close to the core package of the EAST-ADL domain model.

2. An optimization scenario specification. This defines precisely how to conduct the
optimization, for example how many optimization cycles to perform and which external tools
to use for candidate evaluation.
The following information is part of such an optimization scenario specification:

a. Selection of one optimization engine. List of available engines depends on what
engines are installed.

b. Selection of one or more optimization objectives. Each such optimization objective
is an instance of one of the installed analysis wrappers (cf. optimization architecture
above). Here, “an instance” means that a single analysis wrapper may be used
twice or more within a single optimization scenario in order to realize several distinct
objectives that can be evaluated with the same analysis wrapper but with different
configurations.

c. For each engine and objective: an assignment of values to customization
parameters of the corresponding engine / analysis wrapper.
In other words: each OptiPAL-compatible engine and each OptiPAL analysis
wrapper declares a set of customization parameters allowing to customize the
precise behaviour of the engine/analysis during optimization; the optimization
scenario specification then provides value assignments for the parameters of the
selected engine and each selected objective’s analysis wrapper. If a single analysis
wrapper is used more than once for multiple objectives, then distinct parameter
assignments can be provided for each objective, i.e. each instance of the analysis
wrapper.

Figure 23 shows a screenshot of the optimization scenario specification editor in OptiPAL.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 31 (43)

Figure 23. Screenshot of an optimization scenario specification in OptiPAL.

2.5.3 Presentation of Optimization Results in OptiPAL

Given an optimization scenario specification as described in the previous section, OptiPAL can
automatically conduct the entire optimization, i.e. start external tools through analysis wrappers for
each objective, sending candidates to these external tools for evaluation, receiving fitness values,
etc. The result of such an optimization is a set of pareto-optimal candidates. The presentation of
these results in the OptiPAL prototype has been kept fairly simple, because presentation and
visualization was not within the research focus of the MAENAD project. OptiPAL provides a very
simple graphical presentation of the pareto front (see following figure).

Figure 24. Graphical representation of a pareto-front in OptiPAL.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 32 (43)

And the full details of each pareto-optimal candidate is presented in a very simple textual form, as
shown in the below figure. This textual output was not tailored to readability but to ease of
implementation.

Figure 25. Textual representation of optimization results in OptiPAL.

2.5.4 Future plans

The development of OptiPAL should greatly facilitate XGO work in the third year of MAENAD,
enabling us to test the optimization concept on test models and use the feedback received to
develop the concepts further. One of the main tasks ahead is the generation of those test models,
both smaller, simpler models to test individual ideas and problems, and larger models such as the
brake-by-wire model, which is intended to be extended with optimization variability. This has been
a goal for some time but was hampered by a lack of tool support until now.

Should the experiments prove fruitful, the aim is to upgrade and extend OptiPAL further. The first
step will be to implement full genetic algorithms in the COE module, to allow a better assessment
of the practicality of the optimization process and produce more meaningful results in the form of a
Pareto set of optimized designs. As tool support for other analyses matures, it may also be
possible to create new interfaces to other tools or additional OptiPAL-based analysis plugins, e.g.
for other FEV-related objectives such as cable length, battery life, or energy consumption etc.

Finally, the goal is to investigate the feasibility of product line optimization further. This would take
the form of an 'inner optimization loop' and would mean leaving some variability unresolved in the
encoding from the COE to allow the different parts of the product line to be iterated through
exhaustively and analysed individually. The results of these analyses would then be combined in
an analysis-specific manner by the appropriate analysis wrapper and returned as the results of the
evaluation for that product line. Product line optimization would likely be a topic investigated
towards the latter half of the third year, as it depends upon the standard optimization process being
developed successfully.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 33 (43)

2.5.5 Requirements from WT2.1: Identifications of needs

VTEC#UC006: A model of the validator with timing, dependability and cost annotations as well as
design space, variability and take rate annotations is defined and exported to EAXML. An
optimization tool computes the optimal design for the defined product line. The resulting optimized
model is recorded in the model (design space variability removed) and exported in the EAXML file.

UOH#0002: The EAST-ADL error model should fully support automatic optimisation, e.g. through
rules that specify a 1:1 mapping from nominal to error models.

UOH#0005: To support multi-objective optimisation, there must be a standardised way of passing
design candidates to analysis tools/plugins and receiving results in a given format.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 34 (43)

2.6 ASIL allocation with EPM/HiP-HOPS

The algorithm for ASIL allocation has been described in full detail in deliverable D3.2.1, so please
refer to that document for an explanation of the ideas behind the related concepts. For evaluation
and demonstration purposes, a combination of HiP-HOPS and the EPM component modeling tool
has been chosen as a basis. EPM covers the relevant parts of the EAST-ADL domain model in
sufficient detail and had the advantage of already supporting a model export to the HiP-HOPS tool
as a means for external model analysis.

Therefore, the overall implementation of the ASIL allocation consists of these two parts:

1. Implementation of the actual ASIL allocation algorithm in HiP-HOPS.

2. Extension of EPM and its HiP-HOPS export to provide modeling and editing support for the
additional information required in the model specifically for ASIL allocation.

The first part in HiP-HOPS is the main implementation while the part in EPM mainly provides a
front-end to conveniently feed the ASIL allocation algorithm in HiP-HOPS with input data.

2.6.1 Current status

As of MAENAD milestone MS7, the ASIL allocation has been implemented in HiP-HOPS and
related modelling and editing support has been provided in EPM. The implementation has been
tested on smaller models and a larger model immediately taken from industrial practice (from
Continental).

2.6.2 Input Models for ASIL allocation

Several additional modelling elements and attributes had to be added to the data model, together
with editing support in the user interface:

• Hazards, with:

o Name

o Safety Requirement (the ASIL)

o Severity

o Logic (i.e. an expression defining what failure will cause the hazard).

• RiskTime

• Unavailability Formula

The following two screenshots show how this has been realized in the tool. In addition to extending
the meta-model and providing editing support, the HiP-HOPS export in EPM had to be extended to
take care of this information and to properly provide it to EPM.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 35 (43)

Figure 26. Editing Hazards in EPM.

Figure 27. Editing Risk Time (bottom left) and Unavailability Formular (center) in EPM.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 36 (43)

2.6.3 Future Plans

The current support of ASIL decomposition is on a level of what was aimed for in the MAENAD
DoW, and it is possible to perform decomposition of ASILs via HiP-HOPS. Therefore, only minor
fixes and refinements are expected until the end of the project. However, longer term development
work by UOH on improved ASIL decomposition algorithms is still underway, and this may yet feed
into the project if sufficient progress is made.

2.6.4 Requirements from WT2.1: Identification of needs

The work on ASIL decomposition covers MAENAD objective O1-2 “Automatic allocation of safety
requirements (ASILs)”.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 37 (43)

2.7 UPPAAL&Spin Gateways

For formal analysis of EAST-ADL behaviour constraint specification, the model transformations to
two external well-known model checkers are supported. Through these external tools, the users of
EAST-ADL can exhaustively verify an EAST-ADL behaviour constraint specification in regard to
temporal properties of concern, including reachability (i.e. some condition can possibly be
satisfied), safety (i.e. some condition will never occur), and liveness (i.e. some condition will
eventually become true), for the purposes of requirements engineering, compositionality control,
and cross-level conformance check, etc.

1. UPPAAL – a well-known timed model checker. The basic building blocks of UPPAAL
models are asynchronous processes in terms of timed-automata. UPPAAL uses the
concept of broadcast channels for synchronizing more than two processes. UPPAAL
distinguishes the types of process definitions (referred to as templates) from their
instantiations (referred to as process) inside a system. A subset of CTL (computation tree
logic) is used as the query language in UPPAAL for verification. This means, each template
definition can be instantiated multiple times with different parameters.

2. SPIN – a well-known logic model checker. The basic building blocks of SPIN models are
asynchronous processes in terms of finite state automata. SPIN use buffered and
rendezvous message channels, as well as synchronizing statements, for synchronizing
more than two processes.

2.7.1 Current Status

The mapping schemes from EAST-ADL Behavior Description Annex to these two external tools are
available. Work has been conducted to define the plug-in prototypes in MetaEdit+. A demonstrator
for the UPPAAL transformation has been developed.

2.7.2 Input Models for the UPPAAL/Spin Gateways

The ME+ plugin by KTH for UPPAAL&SPIN transformation takes a behaviour constraint
specification as the input model.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 38 (43)

Figure 28. Screenshot of a UPPAAL/SPIN export scenario. The exported file defines the
behaviour model in UPPAAL XMI.

2.7.3 Future plans

Further investigation will be centred on the following issues: 1. To have a more complete coverage
of the regenerative braking case for demonstration purposes. 2. To finish the SPIN transformation
plug-in prototype in MetaEdit+.

2.7.4 Requirements from WT2.1: Identification of needs

Behavior simulation is mentioned in:

DOW#0012 O2-2: Behavioral Simulation of EAST-ADL2 models

DOW#0017 O4-2: Evaluation of dependability & performance analyses

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 39 (43)

2.8 Modelica Exchange

Modelica is a language for modelling and simulation of dynamical systems, and could be used for
various analyses of EAST-ADL models, e.g. modelling of plant models or timing constraints.

2.8.1 Current status

There is a plugin for Papyrus MDT for ModelicaML, using the UML stereotype mechanism. By
assigning both an EAST-ADL FunctionType and a ModelicaML stereotype to a class, Modelica
behaviour can be assigned to EAST-ADL FunctionTypes.

The current idea is to develop Modelica exchange for evaluation of behavioural contraints. It could
also be used for modelling of Hardware Design architecture. There are many FEV-related
requirements that assume that there is a possibility to model and simulate electrical networks.

2.8.2 Input models for Modelica Exchange

The ME+ plugin by KTH for Modelica transformation takes a FAA or a FDA architecture
description, together with the corresponding attribute quantification constraint annotations, as the
input model. The modelling support is given as a part of the EAST-ADL Behaviour Description
Annex.

Figure 29. Screenshot of an example EAST-ADL Attribute Quantification Constraint
Annotation for Modelica export.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 40 (43)

2.8.3 Future plans

One way of co-use of EAST-ADL and ModelicaML is using the EAST-ADL structural model in
combination with the ModelicaML dynamic model. The structural parts could be mapped more or
less directly 1:1 into ModelicaML, the dynamic parts can be modelled by ModelicaML as the
behavioural parts of a FunctionType. The FunctionType in this case should be seen as an
AUTOSAR runnable.

Using the OpenModelica environment, equations could be modelled and simulated. Since this is a
free software, it is attractive.

2.8.4 Requirements from WT2.1: Identifications of needs

Modelica exchange is mentioned in e.g.:

CON#0009: Annotate SysML/Modelica models with EAST-ADL stereotypes. On base of a defined
mapping between SysML and EAST-ADL, the SysML model of the profile and mode selection logic
shall be annotated with EAST-ADL stereotypes. Structural as well as behavioural elements shall
be annotated with EAST-ADL stereotypes

CON#0012: EAST-ADL supports the definition of timing of constraints by the inclusion of the TADL
language. A verification of the TADL constraints shall be possible. It is an option to verify TADL
constraints either by the use of timing analysis techniques as provided by languages as MARTE or
AADL or model simulation techniques as provided by Modelica. Within the scope of the project, it
has to be evaluated, if the verification of timing constraints on base of these techniques is possible
and samples shall be given.

CON#0014: VV Case Development, including fault injection and verification of model constraints in
a Modelica simulation environment.

CON#0021: Virtual integration is an important use case during development within the ID4EV
project. It is obvious that the physical demonstrator will not be available for a long time and the SW
modules must be integrated in a virtual environment. The Modelica simulation environment is very
well suited for integration C-code into the simulation environment.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 41 (43)

2.9 Functional Mock-up Unit Import

The Functional Mock-up Interface (FMI) [5], defines Function Mock-up Units (FMUs) to exchange
and integrate simulation blocks from different modelling tools. This is a standard that many
simulation tools use for interchange of models, and co-simulation. The Function Mock-up Interface
defines the input and output variables of each unit and also the data types of these variables. This
is similar to EAST-ADL AnalysisFunctionTypes, so a transformation should be feasible, to make a
modelling shortcut to create architectural models from simulation models.

2.9.1 Current status

There is an Eclipse plugin that imports the Function Mock-up Unit specification, called Function
Mock-up Interface (FMI). Based on this information, an AnalysisFunctionType with the
corresponding interface is defined in EAXML.

2.9.2 Input models for FMU import

The Input Model for FMU import is the FMI XML file, which is a part of the ZIP archive constituting
an FMU. This archive also contains an executable file for the intended execution platform(s), for
example a Windows DLL. The FMI XML file contains sufficient information to create an EAST-ADL
Analysis Function, i.e. function name, ports and datatypes.

2.9.3 Future plans

The current plugin has flaws concerning the formatting of the EAXML file, which needs to be
corrected. Further, additional options for the import can be foreseen. Currently, only
AnalysisFunction is supported, but any specialization of the FunctionType is a candidate for import.
Further, the FunctionBehavior construct is currently not created and populated with FMU
information, such as the path to the FMU file.

A more extensive potential addition concerns export. Export in the form of FMU generation is
probably not appropriate since EAST-ADL is not primarily a behavioural definition language.
However, export of the FMU:s linked to FunctionBehaviors to a simulation engine would be useful.
This would concern creating S-functions in Simulink according to the connected
FunctionPrototypes or to configure a Simulation manager to run the executables according to
execution and connection information defined in the EAST-ADL model.

2.9.4 Requirements from WT2.1: Identifications of needs

MODELISAR FMU import is not explicitly mentioned in the requirements, although it relates to
behavioural simulation in general.

DOW#0012 O2-2: Behavioural Simulation of EAST-ADL2 models

4SG#0003: Perform behavioural Simulation of EAST-ADL2 models according to performance
evaluation standards

4SG#0004: Perform behavioural Simulation of EAST-ADL2 models according to standards
covering communication with infrastructures

4SG#0019: The project shall enable to perform behavioural simulation according to ISO 8715:
Electric road vehicles - Road operating characteristics

There are more similar requirements on behaviour simulations, see e.g.

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 42 (43)

4SG#0020, 4SG#0021, 4SG#0022, 4SG#0023, 4SG#0024, 4SG#0025, 4SG#0026

MAENAD D5.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 43 (43)

3 References

[1] www.atesst.org, accessed 2011-05-26

[2] www.edona.fr, accessed 2011-05-26

[3] www.artop.org, accessed 2011-05-26

[4] MAENAD: Deliverable D2.1.1, draft version 0.5

[5] www.fmi-standard.org, accessed 2013-03-19

[6] MAENAD: Deliverable D3.1.1

[7] MAENAD: Deliverable D3.2.1

