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1 Introduction 

Deliverable D5.2.1 consists of: 

• The plugins and tools that make up the MAENAD analysis workbench (MAW)  

• This document is providing references and short descriptions of the tools in the MAW. 

The MAW consists of software developed to provide support for modelling and analysis, based on 
specifications of WT3.x. One objective is to validate the analysis concepts. The MAW will be made 
public in order to make the analysis concepts more accessible and understandable. 

For each plugin/tool, the sections Current status, Input Models, Future plans and Requirements are 
available. The Input model sections describe how a model needs to be set up to work with the tool, 
which could also be seen as a test case for the tool. The Requirements sections describe what 
project and language requirements that the plugin/tool fulfils.  

The main target of MAW is the MAENAD Modeling Workbench, D5.1.1, but as it will support 
exchange to other tools using the EAXML format, some adaptors are based on other tools, mainly 
MetaEdit+.  



MAENAD D5.2.1 Grant Agreement 260057 

 2013 The MAENAD Consortium        7 (43) 

 

2 The components of the MAENAD Analysis Platform 

Some of the plugins were developed throughout the ATESST [1], ATESST2 [1] and EDONA [2] 
projects, and will be updated during the MAENAD project, because of new releases of the 
MAENAD modelling workbench, and new releases of the profile. There will also be new plugins, for 
the interchange of EAST-ADL models using an exchange format, and for exchange with Modelica 
and MODELISAR FMU:s. 

 Main 
developer 

Overview 

AUTOSAR Gateway CEA Provide an enhanced transformation from EAST-ADL2 
design architecture to AUTOSAR compliant software 
architecture, based on the ARTOP framework. 

Timing Analysis – 
Qompass Tool 

CEA Provides support for early-stage timing analysis of EAST-
ADL models 

Simulink Gateway KTH Provides input/output facilities with Simulink to enable 
simulation.  

HiP-HOPS Gateway KTH Builds on previous results, expanding analysis capability 
and optimization engine of HiP-HOPS, and enhancing the 
feedback of FMEA/FTA in the design process.  

Architecture 
optimization and 
configuration 

TUB To achieve multi-objective optimization, the prototype tool 
OptiPAL has been developed, based on the EPM platform.  

ASIL allocation with 
EPM/HiP-HOPS 

UoH ASIL allocation with EPM/HiP-HOPS 

UPPAAL&SPIN 
Gateway 

KTH Analysis of behavioural constraints using the model 
checkers UPAAL and SPIN. 

Modelica Exchange KTH Using Modelica together with EAST-ADL for behavior 
analysis. 

FMU Import VTEC Generate EAST-ADL FAA models from Functional Mock-
up Units. 
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2.1 AUTOSAR Gateway 

The AUTOSAR gateway builds on results from EDONA and ATESST2 projects to provide an 
enhanced transformation from the EAST-ADL design architecture to AUTOSAR vehicle 
architecture design and initial system configuration. The gateway is based on the ARTOP 
framework, which is an implementation of common base functionality for AUTOSAR development 
tools, available free of charge for AUTOSAR members [5]. The transformation takes as input the 
EAST-ADL Design Level with functional description, hardware description and allocation 
information and generates a tentative AUTOSAR software architecture, a hardware topology and 
mapping constraints (coming from EAST-ADL allocation information). The generation of the 
tentative software architecture is based on mappings between EAST-ADL functions and 
AUTOSAR software components/runnables that fit in the EAST-ADL Implementation Level.  

2.1.1 Current status 

The first version of the AUTOSAR gateway has been released at M12. This version was based on 
the one developed in the EDONA project and then it had been ported to the new Papyrus MDT 
platform and 2.1.9 EAST-ADL profile version.  

As previously planned, a new version of the AUTOSAR gateway has been released at M24. In this 
version the transformation towards the AUTOSAR implementation architecture relies on an 
AUTOSAR UML profile (subset of AUTOSAR centred on relevant templates: software component, 
system and ECU resource namely). As a result, the transformation from EAST-ADL design 
architecture to AUTOSAR vehicle design architecture/system configuration produces UML profiled 
models. 

AUTOSAR gateway implements also export functionality from AUTOSAR-UML profiled models to 
AUTOSAR XML.  

2.1.2 Input models for the AUTOSAR Gateway 

As specified before, AUTOSAR Gateway servers to generate AUTOSAR model (UML model 
profiled with AUTOSAR concepts) and out of the last, AUTOSAR Gateway can generate arxml file. 
Therefore this subsection will be divided accordingly to this two-step generation process. 

2.1.2.1 EAST-ADL2 to AUTOSAR model 

Generation of AUTOSAR model consists of three phases. These are generation of the Application 
View, the Topology View and the Mapping View. The first one contains specification of the 
software components types and their prototypes. Topology View relates to the hardware topology. 
Mapping View encompasses the definition of a mapping, i.e. software components to ECUs 
allocation. Proper and complete generation of each view depends on the information included in 
the EAST-ADL2 model. Let us consider the EAST-ADL2 model as composed out of three 
packages representing the functional architecture (FDA – Functional Design Architecture), 
hardware topology (HDA – Hardware Design Architecture) and Allocation, i.e. mapping of 
functional entities onto the hardware topology. Figure 1 represents general dependencies of the 
generation results from the information included in the EAST-ADL2 model. Namely, in order to 
generate complete and correct Application View it is necessary to provide FDA, HDA and 
Allocation. This is a consequence of the approach used to generate software architecture. Namely, 
all the atomic functions of the same composite function and allocated on the same ECU are 
transferred to one atomic software component type. The last contains the runnable entities, where 
each runnable entity is generated from one atomic function. In general the way in which software 
architecture is generated, i.e. software component types, their prototypes and runnable entities, is 
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influenced by the compositional structure of the functional model (FDA) but also the way in which 
atomic functions are allocated on the nodes. Therefore all three models, i.e. FDA, HDA and 
Allocation are necessary to generate Application View model.  

 

FDA HDA Allocation

Application 
View

Topology 
View

Allocation 
View

Depends

 

Figure 1. Dependencies in the Generation of the AUTOSAR Model from the EAST-ADL2 
Model 

 

Generation of the Topology View depends only on the information included in the HDA. 
Accordingly, the absence or presence of the FDA model or Allocation model has no influence on 
the Topology View. 

The last Allocation View depends on FDA, HDA and Allocation model. This dependency is rather 
obvious. If the specification of FDA, HDA and Allocation is not complete, as explained before, 
complete and correct Application View cannot be generated, hence there are no entities to 
allocate. In addition if an HDA specification does not exist, there are no hardware entities on which 
the software components can be allocated. Lastly, EAST-ADL2 Allocation model specifies 
functional allocation and by tracing the relation between functions and the produced software 
components, using the EAST-ADL2 Allocation model (described by UML dependencies), allocation 
of software components can be inferred. 

2.1.2.2 AUTOSAR model to arxml 

Generation of the arxml file is relatively simpler than the generation of AUTOSAR model from 
EAST-ADL2. This is a consequence of using one-to-one transformation, i.e. each entity from the 
AUTOSAR model has one, corresponding entity in the arxml file. This was not the case for the 
AUTOSAR model generation, in which the relation between the EAST-ADL2 model and AUTOSAR 
elements is not that obvious, due to the different concepts present in different languages.  

In the context of the implementation, similarly to the generation of AUTOSAR model, generation of 
arxml file is divided on few phases, five in this case. They are as follows: 

• Phase 1: packages generation: all the packages and sub-packages, present in the 
AUTOSAR model are reflected in the arxml file. 

• Phase 2: components generation: all the software component types and software 
component prototypes has their counterparts in the arxml file. Also in this phase, ports and 
their interfaces are generated. 

• Phase 3: connectors generation: this phase generates connectors communicating ports of 
different software components. 

• Phase 4: hardware platform generation: this phase can be divided into three sub-phases: 

o Phase 4.1: generation of ECUs 

o Phase 4.2: generation of Sensors and Actuators 

o Phase 4.3: generation of hardware pins 
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• Phase 5: allocation generation: this phase produces the specification of software 
components to ECUs mapping. 

All of these phases are fully independent and hence failure in the generation of one of them does 
not influence other phases. If the generation of arxml file, directly follows the generation of the 
AUTOSAR model using the AUTOSAR Gateway, the arxml file will be produced without any 
problems. However the idea of the two-fold process, i.e. (EAST-ADL2 model to AUTOSAR model 
and AUTOSAR model to arxml) was to enable the designer to change generated implementation 
model at the modelling level, not at the level of the arxml file. Hence, while doing the specific 
changes at the AUTOSAR model level, designer can violate few important rules that have to be 
respected. 

The entire input model needs to be structured into a way presented on the Figure 2. Arxml file 
generator searches first for the package called Technical View, and then depending on the 
generation phase it searches for the corresponding elements either in the Application View or the 
Topology View or the Mapping View package. For instance if this is “Components generation” 
phase it will look for the software component types and prototypes in the Application View 
package. Otherwise if there is software component type or prototype specified outside of this 
package, no corresponding entity in the arxml file will be generated. Other phases are run 
analogously. Below is a set of general rules for the appropriate containment of AUTOSAR model 
elements within the three mentioned packages, so their corresponding arxml file entities will be 
generated. 

Application View: this package should contain all software component types, such as 
ApplicationSwComponentType, SensorActuatorSwComponentType or 
CompositionSwComponentType. Then all the prototypes, i.e. SwComponentPrototypes should be 
specified as owned attributes of the composition software component (see Figure 3). 
InternalBehaviour should be specified as an owned behaviour of a software component type. Ports 
of SwComponentTypes should be specified as owned attributes (see Figure 5). Lastly, port 
connectors are specified as owned connectors of the software composition type (see Figure 6). In 
general, all the information needed for the phase 2 and 3 should be included in the Application 
View. 

 

 

Figure 2. Structure of the AUTOSAR model recognized by the arxml file Generator 
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Figure 3. Specification of Software Component Prototypes as Owned Attributes of a 
CompositionSwComponentType 

 

 

Figure 4. InternalBehavior of SwComponentType specified as an ownedBehavior 

 

Figure 5. Port specified as Owned Attribute of Software Component Type 
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Figure 6. Port connectors specified as Owned Connectors of Composition Software Type 
 

Phase 4 relates to the Topology View and hence all the elements that refer to hardware should be 
specified within this package. These are sensors and actuators (SensorHw, ActuatorHw), ECUs 
and their  occurrences, communication connectors, hardware pins, communication clusters (e.g. 
FlexrayCluster) and physical channels (e.g. EthernetPhysicalChannel). Few important things 
should be kept in mind concerning the Topology View. First, AUTOSAR stereotypes SensorHw 
and ActuatorHw are applicable on Class and represent the sensor/actuator type. The occurence of 
specific sensor/actuator is specified as a Property, but no stereotype is applied. This comes from 
the fact that no specific element exists in AUTOSAR to model the instance of either sensor or 
actuator, while EAST-ADL2 has the HardwareComponentPrototype. The Property representing the 
occurrence of a specific sensor/actuator should be present as an owned attribute of the 
sensor/actuator type. Secondly occurrences of ECUs, i.e. ECUInstance are specified as owned 
attributes of their ECU type. Next, communication connectors of ECU instances are specified as 
owned attributes of their ECU type. Lastly, concerning the global communication, i.e. 
communication buses, they are specified using the AUTOSAR stereotypes such as CanCluster (for 
the CAN bus), FlexRayCluster (for the FlexRay bus), etc. and their corresponding physical 
channels, such as CanPhysicalChannel (for the CanCluster), etc. The physical channel is specified 
as the UML Connector stereotyped with the PhysicalChannel stereotype. The physical channel 
should be within the owned connectors of the Cluster, present in the model as the UML Class (see 
Figure 7). 

 

 

Figure 7. Specification of a Cluster and corresponding Physical Channel as an Owned 
Connector. 

 

The last, Phase 5 requires only that the specification of software allocation is contained in the 
Mapping View package. See example on the Figure 8. 



MAENAD D5.2.1 Grant Agreement 260057 

 2013 The MAENAD Consortium        13 (43) 

 

Figure 8. Specification of a Mapping View with the Owned Comments modeling allocation of 
Software Components 

2.1.3 Future plans 

Beyond M30 we will proceed to the AUTOSAR gateway assessment considering feedback from 
MAENAD users. 

2.1.4 Requirements from WT2.1: Identifications of needs 

The AUTOSAR gateway is mentioned in the following requirement:  

DOW#0111: The SWC Synthesis ( FDA-IL ) shall be modelled in MAW-AR Gateway plugin [4]. 
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2.2 Timing Analysis 

At the beginning of the project the purpose of the Timing Analysis plug-in was centred on the idea 
of providing schedulability analysis of EAST-ADL models. Beyond M12, Timing Analysis for EAST-
ADL models has been refined [6]. The following timing analyses have been identified as best-
suited to support EAST-ADL Design level models (as documented in D3.1.1): 

Early Stage Schedulability Analysis. The allocation model of EAST-ADL defines on which ECUs, 
functions will be executed and on which buses, communication between functions will take place. 
Based on this information, the following two interesting metrics, relevant from a schedulability point 
of view, can be considered: 

• Resource Utilization. Resource utilization is a function of (i) the function’s activation rate 
and (ii) a time budget representing the time an execution/communication will take. Based 
on utilization of single resources, other related interesting metrics can also be extracted, as 
load distribution and function/signals extensibility (function of processors/bus slacks).  

• Interference Time: represents the waiting time to access shared resources (CPU/Bus). This 
delay is caused by concurrent functions/signals that are allocated to the same 
execution/communication node. Small interference is desirable to minimize end-to-end 
latency.  

Schedulability analysis. Schedulability analysis is applied for the special case of linear chains of 
activations running on a mono-processor system and when chain rates are harmonic. The task 
model is generated automatically. This generation is transparent to the user. Once the task model 
is obtained, a response time will be computed for each end-to-end chain (thread) trough Rate 
Monotonic Analysis [6].  

2.2.1 Current status 

Let us be reminded that at the beginning of the MAENAD project the analysis engine should have 
been provided as a third-party tool. On the other hand, after EDONA and ATESST2, CEA worked 
on the implementation of schedulability analysis algorithms as part of its research activities (not 
included in the MAENAD project) in its own MARTE-based plug-in called Qompass. This timing 
analysis support was not completely compliant with timing analyses identified as best-suited for 
EAST-ADL design models (Section 2.2). Moreover, in order to directly analyse EAST-ADL models, 
a transformation between EAST-ADL profile models and entry models for Qompass was needed.  

During year 2 the Qompass timing support has been adapted/enhanced in order to support EAST-
ADL design-level timing analyses. An EAST-ADL/Qompass transformation has been developed as 
well. A new version of the Timing Analysis plug-in, has been released at M24 embedding these 
new features.  

At the end of year 2, the input model for the Qompass tool assumed only linear event chains, 
where each chain contained a linear sequence of functions and where neither functions nor stimuli 
could belong to more than one event chain. In order to support the analysis of the brake-by-wire 
(BBW) system, an extension was needed, as the BBW owns functions belonging to multiple event 
chains. At the current state this extension has been implemented and now Qompass can run on 
the BBW model. 

 

2.2.2 Input models for the Timing Analysis plug-in 

In this section we present the EAST-ADL methodology needed to build a well-formed model for 
timing analysis. Timing analysis needs a minimal amount of information that must be specified. The 
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goal of timing analysis is to give estimation of the quality of an allocation of functions to hardware 
nodes. Indeed, the usage of concrete resources for the execution of functions and communication 
among functions has a huge impact on the ‘timing’ aspect of the application, i.e. the delay for an 
expected response to be produced. The main issue here is that in the general case resources will 
be shared among multiple functions. The way in which resources are shared determines the time 
for a given function to complete. From these considerations it is clear that relevant information for 
the timing analysis is: the chains of function activations that compose a system response and 
subject to a deadline; the allocation of functions to nodes; the estimation of the resource demand 
of each function, the maximal utilization capacity of resources.  

In the reminder of this section we describe how to specify this information in EAST-ADL using a 
running example, the BBW model. In Figure 9 an excerpt of the functional design architecture of 
the BBW is shown. All these functions belong to system responses subject to a hard deadline.  

In order to define a system response, i.e. a path of function activations, from a stimulus to a 
response, we need to specify an EventChain. Figure 10 shows the event chain whose stimulus is 
the ‘BrakePedalSensorInputPortEvent’ EventFunctionFlowPort, related to the ‘PositionIn’ 
FunctionPort of the ‘pBrakePedalSensor’ FunctionPrototype (see Figure 11) and whose response 
is the ‘BrakeActuatorFLOutputPortEvent’ EventFunctionFlowPort, related to the ‘BrakeTorq’ 
FunctionPort of the ‘pBrakeActuator_FL’ FunctionPrototype (see Figure 12).  

Note that it is mandatory for an EventFunctionFlowPort that both the port and port_path attributes 
are specified.  

Note that it is mandatory for the event chain to have exactly one stimulus and exactly one 
response.  

Once an event chain has been specified like that, the entire path can now be unambiguously 
derived only if the graph of functions is a directed acyclic graph without cycles. In this particular 
case this means that all ports are unidirectional, with the ‘PositionIn’ FunctionPort with 
direction=’in’ and the BrakeTorq FunctionPort with direction= ‘out’. Note that it is mandatory to 
remove all the bidirectional function ports to run the transformation and the analysis.  

It is also mandatory that each stimulus is generated by a unique source function.  

 

 

Figure 9. Excerpt of the Functional Design Architecture 
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Figure 10. Example of Event Chain 
 

 

Figure 11. Stimulus Specification 
 

 

 

Figure 12. Response Specification 
 

 

In order to characterize an event chain in terms of timing properties, a number of constraints must 
be specified, as follows:  

• Periodic Constraint, for the stimulus of each event chain; it specifies the arrival period for 
the stimulus; 
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• Reaction Constraint for the entire event chain; it specifies the relative deadline for the 
execution of all functions belonging to the path identified by the event chain;  

• Execution Time Constraint for each function in the path of the event chain; it specifies the 
worst case execution time for the function to be executed as if it were executed in isolation 
on the resource; 

Note that the specification of these properties is not mandatory, as the Qompass tool allows for 
specifying this information directly in the MARTE model, right after the transformation EAST-
ADL/Qompass. 

The specification of a periodic constraint is shown in Figure 13. An element must be created while 
specifying two attributes: period and event. 

In order to set the period, a TimeDuration element must be previously defined. The TimeDuration 
element must have the attribute value specified (see Figure 14). This value is the actual period for 
the constraint.  

In order to set the event the constraint refers to, the event attribute must be set. Figure 13 shows 
that the constraints refers to the event ‘BrakePedalSensorInputPortEvent’, which is the stimulus of 
the event chain shown in Figure 10. 

  

 

Figure 13. Periodic Event Constraint Specification 
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Figure 14. Time Duration Specification 
 

The specification of a Reaction Constraint is shown in Figure 15. Two attributes have to be 
specified here, scope and upper. Scope refers to the event chain subject to the constraint, in our 
case the event chain shown in Figure 10. Upper is again a TimeDuration element, which must 
specify the value of the deadline.  

 

 

Figure 15. Reaction Constraint Specification 
 

The specification of an Execution Time Constraint is shown in Figure 16. Two attributes have to be 
specified here, targetDesignFunctionPrototype and upper. The targetDesignFunctionPrototype 
attribute specifies the function (prototype) the execution time constraint refers to. Upper is again a 
TimeDuration element, which must specify the value of the worst case execution time of the 
function prototype.  
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Figure 16. Execution Time Constraint Specification 
  

In order to specify the concrete resources for the execution of functions, allocations must be 
specified. Once again allocation information is optional, in the sense that allocations can be 
alternatively specified right after the transformation EAST-ADL/Qompass. Figure 17 shows an 
allocation of all the functions belonging to the functional design architecture of Figure 9.  

 

 

Figure 17. Allocation 
 

In this UML diagram, the FunctionAllocation is represented as a dependency (more technically the 
FunctionAllocation concepts extends the UML Dependency metaclass), through a dotted arrow 
from the client to the supplier. The two attributes /target (supplier) and /allocatedElement (client) 
are derived, i.e. automatically set when the dependency is established.  
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In the case the ensemble of functions is allocated on a distributed platform, the topology of the 
platform must be specified. In particular the Qompass tool needs to know how nodes are 
connected through buses. This information is retrieved using the LogicalBus concept. A logical bus 
must be defined, and in particular all the connectors connecting nodes that can communicate 
through the bus must be specified in the wire attribute, as shown in Figure 18.  

 

 

Figure 18. Logical Bus Specification 

2.2.3 Future plans 

M30 was planned to be the last release for the Qompass plug-in: i in compliance with what has 
been planned, the timing analysis can now be applied on the BBW model. This analysis performs 
an early stage evaluation of timing properties hold by design level models (see [7]), but response 
time analysis is not provided. The Qompass plug-in, in fact, computes response times only for the 
mono-processor case (as an implementation model is automatically and transparently generated 
from the design model). An update of the plug-in has been scheduled for the end of June providing 
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response time analysis for the distributed case and possible improvements required by MAENAD 
users. Requirements from WT2.1: Identifications of needs 

The Timing Analysis plugin is mentioned in the following requirement:  

DOW#0110: The Timing analysis ( DL ) shall be modelled in MAW-Timing plugin [4]. 
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2.3 Simulink Gateway 

 

 

During

 

 

The Simulink gateway builds on results from the ATESST2 project, a Simulink gateway was 
developed, and provides input/output facilities of models with Simulink to enable simulation. The 
plugin is divided in two parts (Figure 19): 

• A GUI plugin to the MATLAB/Simulink environment, which aids the user in creating models 
that conform to the format that is needed to being able to convert it into an EAST-ADL 
model.  

• An Eclipse plugin, which can convert between the intermediate format of Simulink models 
and EAST-ADL models 

The MATLAB plugin exports the MATLAB/Simulink models into a custom Ecore-based format. A 
subset of Simulink functions is used; only library blocks of subsystems are considered. However, 
any Simulink model could be converted into a structure of system reference blocks, without 
affecting the model’s simulation behaviour. The GUI plugin for Simulink mentioned above converts 
standard Simulink subsystems to system reference blocks, and tags them for conversion to EAST-
ADL by putting them in a “FunctionTypes”-library, and assigning a unique ID, to allow bi-directional 
exchange and updates. To include the internal structure of a subsystem, the same pattern is 
repeated. 

Import works the other way around, FAA FunctionTypes and FunctionPrototypes are imported to 
empty library blocks in the “FunctionTypes”-library, and instances of them respectively. 

In addition to the above tool MetaCase has developed a Simulink-exchange mechanism for 
MetaEdit+, creating .mdl-files. A similar mapping is used as the above mentioned plugin.  

With MetaEdit+, KTH has developed another exchange from MetaEdit+ to Simulink and StateFlow, 
as a validator for the behavioural annex. Instead of .mdl-files, this plug-in relies on Matlab API for 
the creation of Simulink/Stateflow models. 

2.3.1 Current status 

An effort has been made to port the plugin developed in the ATESST2 project to the new Papyrus 
MDT environment. It is possible to run the plugin, but the ATL transformation eventually crashes, 
for unknown reasons. 
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Figure 19. Overall design 



MAENAD D5.2.1 Grant Agreement 260057 

 2013 The MAENAD Consortium        23 (43) 

Due to lack of resources from KTH, no further development has taken place, there are no interest 
in further developing this plugin.  

Simulink exchange has been implemented in MetaEdit+, which could better serve as a 
demonstrator for proof-of-concept exchange between Simulink and EAST-ADL.  

2.3.2 Input models for the Simulink Gateway 

The ME+ plugin by MetaCase for Simulink transformation takes a FAA or a FDA architecture 
description as the input model. 

The ME+ plugin by KTH for Simulink&Stateflow transformation takes a FAA or a FDA architecture 
description, together with the corresponding behaviour constraint annotations, as the input model.  

 

 

 

Figure 20. Screenshot of a Simulink export scenario. The exported file defines the commands to 
Matlab API for model creation. 
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Figure 21. Screenshot of a Simulink export scenario, where the behavioural content of 
blocks in Stateflow is added. The exported file defines the commands to Matlab API for 
behaviour model creation. 

2.3.3 Future plans 

KTH is prototyping of behaviour analysis with MATLAB/Simulink using the MetaEdit+ editor, and 
exchange mechanism. 

2.3.4 Requirements from WT2.1: Identifications of needs 

A2#11: A formalized meta-model of the architecture description language shall be developed. 
(including structural elements, behavioural description means, models of computations, and 
transformation rules to prototype tools and Simulink.)  

DOW#0112: The Simulink import-export ( FAA, FDA ) shall be modelled in MAW-Simulink plugin. 
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2.4 HiP-HOPS Gateway 

Integrating safety analysis into the development of automotive embedded systems requires 
translating concepts of the automotive domain to the generic safety and error analysis domain. We 
assume a model-based development process where automotive concepts are represented by the 
EAST-ADL2 architecture description language, which supports system design on multiple levels of 
abstraction. The concepts of the error analysis domain are represented by the safety analysis tool 
HiP-HOPS. 

There are two separate interfaces to HiP-HOPS that have been developed. The first is a plugin for 
Papyrus, and the second is a plugin for EPM. Both will be briefly described below. 

2.4.1 Papyrus Plugin 

The first of the two interfaces to HiP-HOPS is a model transformation plugin for the Papyrus tool, 
which was primarily developed in ATESST2 by Matthias Biehl from KTH. It has since been updated 
again during MAENAD by Nataliya Yakymets of CEA, with additional assistance from KTH. It 
allows EAST-ADL models that have been developed in Papyrus to be exported to HiP-HOPS for 
analysis. 

It is assumed that EAST-ADL models are built using the UML profile. The HiP-HOPS plugin 
extensively uses the concepts defined in the EAST-ADL error model, but also other language 
constructs from the FDA level. 

We automate the translation from EAST-ADL to HiP-HOPS by using model transformations. We 
leverage the advantages of different model transformation techniques by decomposing the 
translation into two distinct phases, and using an appropriate technique for each phase: A phase 
for conceptual mapping between the domains followed by a phase for representing the output in 
the desired concrete syntax. 

With the resulting tight integration of the safety analysis tool and the model-based development 
environment, the automotive safety engineer can perform the safety analysis repeatedly on refined 
models with minimal effort. This is compliant with the iterative design activities, which require 
starting the analysis after each change in the system design.  

The HiP-HOPS Gateway builds on previously developed Model Transformations and Eclipse 
Plugin knowledge developed during ATESST2. The process involved some harmonization 
between the EAST-ADL error model and the HiP-HOPS metamodel as well, and led to the 
development of multi-perspective analysis capabilities in HiP-HOPS.  

2.4.2 EPM Plugin 

The second EAST-ADL gateway to HiP-HOPS is an interface developed for the EPM tool by Mark-
Oliver Reiser at TUB. This also originally arose from near the end of the ATESST2 project, where it 
was needed to be able to perform a HiP-HOPS safety analysis on a demonstrator model that only 
existed in EPM. It has since been extended further during MAENAD in parallel to the Papyrus 
plugin. 

Unlike the Papyrus interface, which exports to HiP-HOPS via a model transformation engine, the 
EPM plugin performs a simpler export of only the relevant error model information to construct the 
HiP-HOPS input XML file. Because this does not rely so much on the EAST-ADL metamodel, it is 
less prone to becoming out of date due to version changes in the metamodel (whereas the 
Papyrus plugin would potentially need updating with each change). 
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The range of information EPM can export to HiP-HOPS has been considerably expanded during 
MAENAD, also serving as the basis for the ASIL decomposition tool support, and further 
extensions are planned for the future. 

2.4.3 Current status 

The Papyrus plugin is updated to support EAST-ADL models built using the UML profile version 
2.1.10. It uses the concepts defined in the EAST-ADL error-model, but also other language 
constructs from the FDA level. Core functionality is working, including HW-SW allocation. 

• Update of the plugin to work with the current version of Eclipse Indigo 

• Update of the plugin to work with the current version of Papyrus MDT 0.8.2 

• Update of the plugin to work with the current version of the EAST-ADL Profile 2.1.10 

• Update of the test model for the current version of Papyrus 

The EPM plugin is also being updated to serve as the basis of ASIL decomposition export to HiP-
HOPS. 

2.4.4 Input models for the HiP-HOPS Gateway 

An example input model for the Papyrus HiP-HOPS Gateway is available on the repository below. 
Example EPM models will also become available in due course. 

2.4.5 Future plans 

The Papyrus HiP-HOPS gateway has been made public on the link below. It is released under the 
Eclipse Public License. No further development or maintenance is planned by KTH. 

 

https://code.google.com/p/east-adl-safety-analysis/ 

 

As stated above, the EPM plugin is still being updated and developed further to increase the range 
of information it can export to HiP-HOPS, and thus increase the range of analyses available to 
users. See also section 2.6 below for more information. 
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2.4.6 Requirements from WT2.1: Identifications of needs 

UOH#0003: The HiP-HOPS analysis tool should support any ISO 26262 or related concepts (such 
as ASIL decomposition) necessary to allow ISO-compatible dependability analysis of EAST-ADL 
models. 

UOH#0004: EAST-ADL and HiP-HOPS should be able to intercommunicate by means of model 
transformations provided by a dependability plugin in the MAENAD Analysis Workbench (MAW). 
Furthermore it should be possible to import or store the results from HiP-HOPS in the Workbench 
and/or the EAST-ADL model, which will require establishing some form of (perhaps XML based) 
interchange format.  
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2.5 Architecture optimization and configuration 

The architectural optimization & configuration capabilities to be developed in MAENAD build upon 
several tools and plugins, including CVM (and the corresponding variability management plugin 
from ATESST2), HiP-HOPS (and its associated plugin), and timing analysis tools like MAST (and 
associated plugin(s)). These tools need to be interfaced with an optimization engine for fully multi-
objective optimization of EAST-ADL models to be possible.  

2.5.1 Current status 

A proposal for an EAST-ADL optimization architecture was developed over the course of the 
second year of MAENAD, building upon initial ideas from the meeting in York May 2011. This 
architecture is shown below: 

 
 

 

The optimisation architecture is described further in D3.2.1, but is intended to serve as a blueprint 
for the implementation of tool support for the optimisation process. It consists of several major 
elements, briefly described below: 

• Optimization Space Definition Module (OSDM) 

This module takes a variability-rich EAST-ADL model and generates a 'master encoding hierarchy', 
which is a hierarchical key to the design space represented by the model variability. In practice, 

Figure 22. Optimisation Architecture 
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this takes the form of a feature tree (with slight modifications), and can therefore be generated by 
variability tools like CVM. 

• Central Optimization Engine (COE) 

The COE is the driver of the optimization process. It is responsible for exploring the optimization 
design space on the basis of heuristic algorithms such as genetic algorithms. It generates an 
encoding for a particular design candidate, which is then resolved by the VRM (see below) and 
evaluated by analysis plugins to determine its relative score in each of the objectives being 
optimized (e.g. reliability, performance, cost, energy consumption etc.). Optimal candidates are 
preserved while sub-optimal designs are discarded. Once the process is complete, the COE will 
generate a report containing the set of optimized design candidates. 

• Variability Resolution Mechanism (VRM) 

The COE does not manipulate the EAST-ADL model directly. Instead, it modifies encodings 
(essentially feature trees), and then passes each encoding to the VRM, which is responsible for 
resolving the variability in the original model according to the encoding in order to produce a new 
model — a design candidate — that can then be analysed and evaluated. 

• Analysis modules 

For each objective being analysed, there needs to be a corresponding analysis module. The 
intention is that these analysis modules can be either external tools (such as HiP-HOPS or timing 
analysis tools like Qompass) or plugins written for the modelling/analysis environment (e.g. 
Papyrus, MetaEdit+, EPM etc.). The optimisation architecture does not necessarily interact with 
them directly; instead there should be a common approach, implemented by 'wrapper' objects if 
necessary, to present a consistent interface to the analysis modules. The hope is that this will allow 
new analysis modules and thus new objective types to be added (or removed) from the 
optimization process without requiring modification of the main optimization elements (i.e., the 
OSDM, COE and the VRM).  

Scope has been left for product line optimisation to be added at a future date, although this will 
require additional complexity in the analysis wrappers, as each analysis type may have to function 
differently to achieve optimisation of product lines (e.g. the results of an unavailability analysis on a 
product line may just be the maximum probability, while the results of a cost analysis are likely to 
be a sum of weighted costs; the result is therefore heavily dependent on the type of analysis).  

An initial prototype tool, OptiPAL, was developed by TUB and builds upon the EPM platform. It 
implements both the OSDM and VRM as part of the existing CVM plugin and also includes a new 
prototype COE. The COE is presently only a simple experimental version and does not implement 
the full genetic algorithm for optimization yet, but it does allow for generation of different encodings 
and thus allows the main optimization loop to take place. Analysis is provided by an OptiPAL cost 
analysis plugin (which currently only does simple cost summations) and a bridge to the HiP-HOPS 
safety analysis tool for dependability analysis via FTA.  

OptiPAL is primarily intended as a proof of concept and as a way of testing out the optimization 
concepts on test models, to provide feedback to facilitate further development of the optimization 
architecture concept. Should it prove successful, however, it may evolve into a more fully functional 
optimization tool. 

2.5.2 Input models for the OptiPAL tool 

As a basis for the implementation of the optimization prototype called OptiPAL, the EPM 
component editor has been chosen. While this editor implements only a subset of EAST-ADL, it 
provides a good basis for the optimization prototype because it already contains full support for 
variability management and configuration (making use of the CVM framework) and the optimization 
architecture relies on variability modelling concepts for defining the optimization space, as detailed 
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above. In addition, EPM provides flexible extension mechanisms that allows for a tight integration 
of the OptiPAL prototype with the basic modelling capabilities of EPM. 

The input for an optimization with OptiPAL can be summarized as follows: 

1. A variant-rich EPM model. System variations defined in this model comprise (a) product line 
variability and (b) design space variability. For the purpose of optimization, the second form 
of variability defines the optimization space while the first form requires special treatment 
during optimization. For more details refer to deliverable D3.2.1. 
For the purpose of the OptiPAL prototype and EAST-ADL validation within the MAENAD 
project, this EPM model can be perceived as an EAST-ADL model, because the EPM 
meta-model is sufficiently close to the core package of the EAST-ADL domain model. 

2. An optimization scenario specification. This defines precisely how to conduct the 
optimization, for example how many optimization cycles to perform and which external tools 
to use for candidate evaluation. 
The following information is part of such an optimization scenario specification: 

a. Selection of one optimization engine. List of available engines depends on what 
engines are installed. 

b. Selection of one or more optimization objectives. Each such optimization objective 
is an instance of one of the installed analysis wrappers (cf. optimization architecture 
above). Here, “an instance” means that a single analysis wrapper may be used 
twice or more within a single optimization scenario in order to realize several distinct 
objectives that can be evaluated with the same analysis wrapper but with different 
configurations. 

c. For each engine and objective: an assignment of values to customization 
parameters of the corresponding engine / analysis wrapper. 
In other words: each OptiPAL-compatible engine and each OptiPAL analysis 
wrapper declares a set of customization parameters allowing to customize the 
precise behaviour of the engine/analysis during optimization; the optimization 
scenario specification then provides value assignments for the parameters of the 
selected engine and each selected objective’s analysis wrapper. If a single analysis 
wrapper is used more than once for multiple objectives, then distinct parameter 
assignments can be provided for each objective, i.e. each instance of the analysis 
wrapper. 

Figure 23 shows a screenshot of the optimization scenario specification editor in OptiPAL. 
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Figure 23. Screenshot of an optimization scenario specification in OptiPAL. 

2.5.3 Presentation of Optimization Results in OptiPAL 

Given an optimization scenario specification as described in the previous section, OptiPAL can 
automatically conduct the entire optimization, i.e. start external tools through analysis wrappers for 
each objective, sending candidates to these external tools for evaluation, receiving fitness values, 
etc. The result of such an optimization is a set of pareto-optimal candidates. The presentation of 
these results in the OptiPAL prototype has been kept fairly simple, because presentation and 
visualization was not within the research focus of the MAENAD project. OptiPAL provides a very 
simple graphical presentation of the pareto front (see following figure). 

 

 

Figure 24. Graphical representation of a pareto-front in OptiPAL. 
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And the full details of each pareto-optimal candidate is presented in a very simple textual form, as 
shown in the below figure. This textual output was not tailored to readability but to ease of 
implementation. 

 

 

Figure 25. Textual representation of optimization results in OptiPAL. 

2.5.4 Future plans 

The development of OptiPAL should greatly facilitate XGO work in the third year of MAENAD, 
enabling us to test the optimization concept on test models and use the feedback received to 
develop the concepts further. One of the main tasks ahead is the generation of those test models, 
both smaller, simpler models to test individual ideas and problems, and larger models such as the 
brake-by-wire model, which is intended to be extended with optimization variability. This has been 
a goal for some time but was hampered by a lack of tool support until now. 

Should the experiments prove fruitful, the aim is to upgrade and extend OptiPAL further. The first 
step will be to implement full genetic algorithms in the COE module, to allow a better assessment 
of the practicality of the optimization process and produce more meaningful results in the form of a 
Pareto set of optimized designs. As tool support for other analyses matures, it may also be 
possible to create new interfaces to other tools or additional OptiPAL-based analysis plugins, e.g. 
for other FEV-related objectives such as cable length, battery life, or energy consumption etc. 

Finally, the goal is to investigate the feasibility of product line optimization further. This would take 
the form of an 'inner optimization loop' and would mean leaving some variability unresolved in the 
encoding from the COE to allow the different parts of the product line to be iterated through 
exhaustively and analysed individually. The results of these analyses would then be combined in 
an analysis-specific manner by the appropriate analysis wrapper and returned as the results of the 
evaluation for that product line. Product line optimization would likely be a topic investigated 
towards the latter half of the third year, as it depends upon the standard optimization process being 
developed successfully. 
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2.5.5 Requirements from WT2.1: Identifications of needs 

VTEC#UC006: A model of the validator with timing, dependability and cost annotations as well as 
design space, variability and take rate annotations is defined and exported to EAXML. An 
optimization tool computes the optimal design for the defined product line. The resulting optimized 
model is recorded in the model (design space variability removed) and exported in the EAXML file. 

UOH#0002: The EAST-ADL error model should fully support automatic optimisation, e.g. through 
rules that specify a 1:1 mapping from nominal to error models. 

UOH#0005: To support multi-objective optimisation, there must be a standardised way of passing 
design candidates to analysis tools/plugins and receiving results in a given format. 
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2.6 ASIL allocation with EPM/HiP-HOPS 

The algorithm for ASIL allocation has been described in full detail in deliverable D3.2.1, so please 
refer to that document for an explanation of the ideas behind the related concepts. For evaluation 
and demonstration purposes, a combination of HiP-HOPS and the EPM component modeling tool 
has been chosen as a basis. EPM covers the relevant parts of the EAST-ADL domain model in 
sufficient detail and had the advantage of already supporting a model export to the HiP-HOPS tool 
as a means for external model analysis. 

Therefore, the overall implementation of the ASIL allocation consists of these two parts: 

1. Implementation of the actual ASIL allocation algorithm in HiP-HOPS. 

2. Extension of EPM and its HiP-HOPS export to provide modeling and editing support for the 
additional information required in the model specifically for ASIL allocation. 

The first part in HiP-HOPS is the main implementation while the part in EPM mainly provides a 
front-end to conveniently feed the ASIL allocation algorithm in HiP-HOPS with input data. 

2.6.1 Current status 

As of MAENAD milestone MS7, the ASIL allocation has been implemented in HiP-HOPS and 
related modelling and editing support has been provided in EPM. The implementation has been 
tested on smaller models and a larger model immediately taken from industrial practice (from 
Continental). 

2.6.2 Input Models for ASIL allocation 

Several additional modelling elements and attributes had to be added to the data model, together 
with editing support in the user interface: 

• Hazards, with: 

o Name 

o Safety Requirement (the ASIL) 

o Severity 

o Logic (i.e. an expression defining what failure will cause the hazard). 

• RiskTime 

• Unavailability Formula 

The following two screenshots show how this has been realized in the tool. In addition to extending 
the meta-model and providing editing support, the HiP-HOPS export in EPM had to be extended to 
take care of this information and to properly provide it to EPM. 
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Figure 26. Editing Hazards in EPM. 

 

Figure 27. Editing Risk Time (bottom left) and Unavailability Formular (center) in EPM. 
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2.6.3 Future Plans 

The current support of ASIL decomposition is on a level of what was aimed for in the MAENAD 
DoW, and it is possible to perform decomposition of ASILs via HiP-HOPS. Therefore, only minor 
fixes and refinements are expected until the end of the project. However, longer term development 
work by UOH on improved ASIL decomposition algorithms is still underway, and this may yet feed 
into the project if sufficient progress is made.  

2.6.4 Requirements from WT2.1: Identification of needs 

The work on ASIL decomposition covers MAENAD objective O1-2 “Automatic allocation of safety 
requirements (ASILs)”. 
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2.7 UPPAAL&Spin Gateways 

For formal analysis of EAST-ADL behaviour constraint specification, the model transformations to 
two external well-known model checkers are supported. Through these external tools, the users of 
EAST-ADL can exhaustively verify an EAST-ADL behaviour constraint specification in regard to 
temporal properties of concern, including reachability (i.e. some condition can possibly be 
satisfied), safety (i.e. some condition will never occur), and liveness (i.e. some condition will 
eventually become true), for the purposes of requirements engineering, compositionality control, 
and cross-level conformance check, etc. 

1. UPPAAL – a well-known timed model checker. The basic building blocks of UPPAAL 
models are asynchronous processes in terms of timed-automata. UPPAAL uses the 
concept of broadcast channels for synchronizing more than two processes. UPPAAL 
distinguishes the types of process definitions (referred to as templates) from their 
instantiations (referred to as process) inside a system. A subset of CTL (computation tree 
logic) is used as the query language in UPPAAL for verification. This means, each template 
definition can be instantiated multiple times with different parameters.  

2. SPIN – a well-known logic model checker. The basic building blocks of SPIN models are 
asynchronous processes in terms of finite state automata. SPIN use buffered and 
rendezvous message channels, as well as synchronizing statements, for synchronizing 
more than two processes. 

2.7.1 Current Status 

The mapping schemes from EAST-ADL Behavior Description Annex to these two external tools are 
available. Work has been conducted to define the plug-in prototypes in MetaEdit+. A demonstrator 
for the UPPAAL transformation has been developed.  

2.7.2 Input Models for the UPPAAL/Spin Gateways 

The ME+ plugin by KTH for UPPAAL&SPIN transformation takes a behaviour constraint 
specification as the input model. 
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Figure 28. Screenshot of a UPPAAL/SPIN export scenario. The exported file defines the 
behaviour model in UPPAAL XMI. 
  

2.7.3 Future plans 

Further investigation will be centred on the following issues: 1. To have a more complete coverage 
of the regenerative braking case for demonstration purposes. 2. To finish the SPIN transformation 
plug-in prototype in MetaEdit+. 

2.7.4 Requirements from WT2.1: Identification of needs 

Behavior simulation is mentioned in: 

DOW#0012 O2-2: Behavioral Simulation of EAST-ADL2 models 

DOW#0017 O4-2: Evaluation of dependability & performance analyses 
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2.8 Modelica Exchange  

Modelica is a language for modelling and simulation of dynamical systems, and could be used for 
various analyses of EAST-ADL models, e.g. modelling of plant models or timing constraints. 

2.8.1 Current status 

There is a plugin for Papyrus MDT for ModelicaML, using the UML stereotype mechanism. By 
assigning both an EAST-ADL FunctionType and a ModelicaML stereotype to a class, Modelica 
behaviour can be assigned to EAST-ADL FunctionTypes.  

The current idea is to develop Modelica exchange for evaluation of behavioural contraints. It could 
also be used for modelling of Hardware Design architecture. There are many FEV-related 
requirements that assume that there is a possibility to model and simulate electrical networks.  

2.8.2 Input models for Modelica Exchange 

The ME+  plugin by KTH for Modelica transformation takes a FAA or a FDA architecture 
description, together with the corresponding attribute quantification constraint annotations, as the 
input model. The modelling support is given as a part of the EAST-ADL Behaviour Description 
Annex. 

 

Figure 29. Screenshot of an example EAST-ADL Attribute Quantification Constraint 
Annotation for Modelica export. 
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2.8.3 Future plans 

One way of co-use of EAST-ADL and ModelicaML is using the EAST-ADL structural model in 
combination with the ModelicaML dynamic model. The structural parts could be mapped more or 
less directly 1:1 into ModelicaML, the dynamic parts can be modelled by ModelicaML as the 
behavioural parts of a FunctionType. The FunctionType in this case should be seen as an 
AUTOSAR runnable. 

Using the OpenModelica environment, equations could be modelled and simulated. Since this is a 
free software, it is attractive. 

2.8.4 Requirements from WT2.1: Identifications of needs 

Modelica exchange is mentioned in e.g.: 

CON#0009: Annotate SysML/Modelica models with EAST-ADL stereotypes. On base of a defined 
mapping between SysML and EAST-ADL, the SysML model of the profile and mode selection logic 
shall be annotated with EAST-ADL stereotypes. Structural as well as behavioural elements shall 
be annotated with EAST-ADL stereotypes  

CON#0012: EAST-ADL supports the definition of timing of constraints by the inclusion of the TADL 
language. A verification of the TADL constraints shall be possible. It is an option to verify TADL 
constraints either by the use of timing analysis techniques as provided by languages as MARTE or 
AADL or model simulation techniques as provided by Modelica. Within the scope of the project, it 
has to be evaluated, if the verification of timing constraints on base of these techniques is possible 
and samples shall be given. 

CON#0014: VV Case Development, including fault injection and verification of model constraints in 
a Modelica simulation environment. 

CON#0021: Virtual integration is an important use case during development within the ID4EV 
project. It is obvious that the physical demonstrator will not be available for a long time and the SW 
modules must be integrated in a virtual environment. The Modelica simulation environment is very 
well suited for integration C-code into the simulation environment. 
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2.9 Functional Mock-up Unit Import 

The Functional Mock-up Interface (FMI) [5], defines Function Mock-up Units (FMUs) to exchange 
and integrate simulation blocks from different modelling tools. This is a standard that many 
simulation tools use for interchange of models, and co-simulation. The Function Mock-up Interface 
defines the input and output variables of each unit and also the data types of these variables. This 
is similar to EAST-ADL AnalysisFunctionTypes, so a transformation should be feasible, to make a 
modelling shortcut to create architectural models from simulation models. 

2.9.1 Current status 

There is an Eclipse plugin that imports the Function Mock-up Unit specification, called Function 
Mock-up Interface (FMI). Based on this information, an AnalysisFunctionType with the 
corresponding interface is defined in EAXML. 

2.9.2 Input models for FMU import 

The Input Model for FMU import is the FMI XML file, which is a part of the ZIP archive constituting 
an FMU. This archive also contains an executable file for the intended execution platform(s), for 
example a Windows DLL. The FMI XML file contains sufficient information to create an EAST-ADL 
Analysis Function, i.e. function name, ports and datatypes.  

2.9.3 Future plans 

The current plugin has flaws concerning the formatting of the EAXML file, which needs to be 
corrected. Further, additional options for the import can be foreseen. Currently, only 
AnalysisFunction is supported, but any specialization of the FunctionType is a candidate for import. 
Further, the FunctionBehavior construct is currently not created and populated with FMU 
information, such as the path to the FMU file. 

A more extensive potential addition concerns export. Export in the form of FMU generation is 
probably not appropriate since EAST-ADL is not primarily a behavioural definition language. 
However, export of the FMU:s linked to FunctionBehaviors to a simulation engine would be useful. 
This would concern creating S-functions in Simulink according to the connected 
FunctionPrototypes or to configure a Simulation manager to run the executables according to 
execution and connection information defined in the EAST-ADL model.  

2.9.4 Requirements from WT2.1: Identifications of needs 

MODELISAR FMU import is not explicitly mentioned in the requirements, although it relates to 
behavioural simulation in general. 

DOW#0012 O2-2: Behavioural Simulation of EAST-ADL2 models 

4SG#0003: Perform behavioural Simulation of EAST-ADL2 models according to performance 
evaluation standards 

4SG#0004: Perform behavioural Simulation of EAST-ADL2 models according to standards 
covering communication with infrastructures 

4SG#0019: The project shall enable to perform behavioural simulation according to ISO 8715: 
Electric road vehicles - Road operating characteristics 

There are more similar requirements on behaviour simulations, see e.g. 
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4SG#0020, 4SG#0021, 4SG#0022, 4SG#0023, 4SG#0024, 4SG#0025, 4SG#0026  
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