



# Automatic ASIL Decomposition







#### Background

- ISO 26262 is the new automotive safety standard
- It uses ASILs Automotive Safety Integrity Levels

   to represent required levels of safety in a
   system
- ASILs can be decomposed over a system
  - A high ASIL can be met by multiple redundant components working together, each with a lower ASIL
  - Many possible ways to decompose ASILs
- Hence the importance of automating ASIL decomposition
  - Allows the best strategies to be found more quickly





#### ASILs in ISO 26262

#### Definition of ASILs

- Carried out during Risk Assessment
- Each Hazardous Event is assigned an ASIL (from A-D, or QM)
- ASIL D is the highest, ASIL A the lowest
- QM means no special safety requirement
- Choice of ASIL is based on controllability, severity, and exposure time
- Requires prior hazard analysis of system
- Corresponding safety goals & safe states should also be defined



3





# ASILs in ISO 26262

- FTA is carried out as part of Functional Safety Requirements definition
- ASILs decomposed and allocated to system functions/components
  - Decomposition is determined by system failure logic (i.e. AND vs OR)
  - The ASIL assigned is determined by an ASIL algebra (e.g. ASIL C = B + A)
- Can be many possible ASIL assignments
  - This makes it difficult to perform manually







### ASILs in ISO 26262

- Decomposition allows greater granularity of safety requirements
- Not all parts of the system need to conform to the highest levels of safety
- Allows resources to be focused on the most critical elements







- EAST-ADL provides support for hazard analysis and assignment of ASILs
- Hazards link to the error model, allowing them to be used in safety analysis
- Safety requirements are traceable across EAST-ADL layers



SEVENTH FRAMEWORK





# ASILs in EAST-ADL

- Hazard Analysis performed on vehicle feature level
  - ASILs are assigned to Hazardous Events
- Initial safety analysis carried out on later levels
  - FTA and/or FMEA can be applied on FAA/FDA models
  - Detailed information about failure modes is unnecessary
  - Propagation logic is what matters
  - ASIL decomposition & allocation can then take place
- Can also make assumptions about ASILs for SEooC
  - <u>Safety Element out of Context</u> no context in which to perform hazard analysis





# FTA and ASIL decomposition

- System failure logic is represented by fault trees
- Results of fault tree analysis (FTA) are cut sets
- Cut sets represent combinations of failures that can cause a hazard
- ASILs for that hazard can therefore be decomposed to the failures in the cut sets





- ASILs from top level failures are decomposed across the cut sets that cause those failures
  - Multiple failure events in a cut set mean all must occur to cause the system failure
- Decomposition of ASILs is based on ASIL algebra:
  - Each ASIL is worth one point (ASIL A = 1, ASIL B = 2 etc)
  - Sum of constituents should be >= overall ASIL
  - e.g. if A = 1 and C = 3, then A + A + A = C
- For any given cut set, there are a maximum of  $p = (m + 1)^n$  permutations
  - p = assignments, m = max ASIL, n = number of events

SEVENTH FRAMEWOR





- Each cut set is covered by a decomposed ASIL
- Cut sets are iterated and for each one, all permutations of possible ASIL assignments are generated
- Assignments that meet requirements are kept, and those that do not are discarded
- Example: simple function with two system failures (omission + commission) and four basic events







• All possible assignments for Omission (ASIL C)

| FE1/FE2 | FE1/FE2 | FE1/FE2 | FE1/FE2 | FE1/FE2 |
|---------|---------|---------|---------|---------|
| QM/QM   | A/QM    | B/QM    | C/QM    | D/QM    |
| QM/A    | A/A     | B/A     | C/A     | D/A     |
| QM/B    | A/B     | B/B     | C/B     | D/B     |
| QM/C    | A/C     | B/C     | C/C     | D/C     |
| QM/D    | A/D     | B/D     | C/D     | D/D     |

- Blue ones do not meet requirements discard
- Black ones are optimal precisely meet requirements
- Red ones are potentially redundant (overly strict) but still need to be explored further





• For each valid assignment for Omission (ASIL C), we test possible assignments for Commission (ASIL D)



<u>Assignments Found:</u> QM : C : A : D QM : C : B : D QM : C : C : D QM : C : D : D A : B : B : D A : B : C : D A : B : C : D B : A : C : D B : A : C : D C : QM : D : D

- FE4 can only be ASIL D (single cause)
- FE2 is set by Omission, so does not change with FE3
- To be accepted, FE2 + FE3 must be ASIL D



• 65 results, of which all but 5 are redundant

| QM:C:A:D  | A:B:B:D  | B:A:C:D  | C:QM:D:D | D:QM:D:D |
|-----------|----------|----------|----------|----------|
| QM:C:B:D  | A:B:C:D  | B:A:D:D  | C:A:C:D  | D:A:C:D  |
| QM:C:C:D  | A:B:D:D  | B:B:B:D  | C:A:D:D  | D:A:D:D  |
| QM:C:D:D  | A:C:A:D  | B:B:C:D  | C:B:B:D  | D:B:B:D  |
| QM:D:QM:D | A:C:B:D  | B:B:D:D  | C:B:C:D  | D:B:C:D  |
| QM:D:A:D  | A:C:C:D  | B:C:A:D  | C:B:D:D  | D:B:D:D  |
| QM:D:B:D  | A:C:D:D  | B:C:B:D  | C:C:A:D  | D:C:A:D  |
| QM:D:C:D  | A:D:QM:D | B:C:C:D  | C:C:B:D  | D:C:B:D  |
| QM:D:D:D  | A:D:A:D  | B:C:D:D  | C:C:C:D  | D:C:C:D  |
|           | A:D:B:D  | B:D:QM:D | C:C:D:D  | D:C:D:D  |
|           | A:D:C:D  | B:D:A:D  | C:D:QM:D | D:D:QM:D |
|           | A:D:D:D  | B:D:B:D  | C:D:A:D  | D:D:A:D  |
|           |          | B:D:C:D  | C:D:B:D  | D:D:B:D  |
|           |          | B:D:D:D  | C:D:C:D  | D:D:C:D  |
|           |          |          | C:D:D:D  | D:D:D:D  |

SEVENTH FRAMEWORK



• Can use heuristics to sort the remainder

| • Using sum of ASIL values (i.e. A=1, B=2, C=3, D=4): |      | <ul> <li>Using increasing points for ASIL<br/>values (A=1, B=10, C= 100 etc):</li> </ul> |        |  |
|-------------------------------------------------------|------|------------------------------------------------------------------------------------------|--------|--|
| QM:C:A:D                                              | = 8  | A:B:B:D                                                                                  | = 1021 |  |
| QM:D:QM:D                                             | = 8  | QM:C:A:D                                                                                 | = 1101 |  |
| A:B:B:D                                               | = 9  | B:C:A:D                                                                                  | = 1111 |  |
| B:C:A:D                                               | = 10 | QM:D:QM:D                                                                                | = 2000 |  |
| C:QM:D:D                                              | = 11 | C:QM:D:D                                                                                 | = 2100 |  |

- This helps the analyst decide on the preferred option
- There may not be a single 'best' option
- More likely to be trade-offs between equivalent options
  - Higher ASIL for one element means lower ASIL on another, and vice versa

SEVENTH FRAMEWOR PROGRAMME





#### ASIL assignment

- Once an ASIL assignment for the failure modes has been chosen, ASILs can also be assigned to other parts of the model
  - Can assign ASILs to input and output errors, to trace the propagation of failures
  - Can also assign ASILs to ports/interfaces of a component or function
  - ASILs can also be assigned to entire components/functions or subsystems
  - This also allows for ASILs to be assigned to process faults of functions



#### Optimisation of ASILs

- Automatic ASIL decomposition is a good candidate for automatic optimisation algorithms
- When there are lots of possible assignments, exhaustive search becomes impractical
  - Exhaustive search is subject to combinatorial explosion
  - For a single 4 event cut set, there are 625 permutations
- In these cases, optimisation could be used
  - Objective is to meet requirements at lowest cost (i.e. lowest total ASIL heuristic value)
  - Optimisation algorithms are more scalable as they are designed to explore large search spaces efficiently

SEVENTH FRAMEWOR PROGRAMME





#### Tool integration

- MAENAD has integrated this technology into tools
  - HiP-HOPS provides the analysis capability
  - EPM provides modelling capability
  - Starts ASIL decomposition directly from EPM as with other analyses

#### On going development

- New method using optimization search algorithms
  - Improves scalability
- Possible hybrid approaches:
  - Exhaustive algorithm for smaller models
  - Optimisation for larger models





SEVENTH FRAMEWOR

- EAST-ADL support for hazard analysis and ASIL decomposition is important to conform to ISO 26262
- But ASIL decomposition is difficult to perform manually
- Prototype version implemented in HiP-HOPS
- Allows more rapid determination of ASIL assignments
- Can use optimisation to increase efficiency