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Abstract 

This White Paper gives an overview to EAST-ADL. The document is intended for engineers that 
need a short introduction to the language, through descriptions and examples.  

EAST-ADL is an Architecture Description Language (ADL) initially defined in the ITEA project 
EAST-EEA around 2000. Subsequently, several national and international funded projects have 
refined the language, and it is now aligned with the more recent AUTOSAR automotive standard. It 
provides a comprehensive approach for describing automotive electronic systems through an 
information model that captures engineering information in a standardized form. Aspects covered 
include Vehicle Features, Requirements, Analysis Functions, software and hardware components 
and communication. The representation of the system’s implementation is not defined in EAST-
ADL itself but by AUTOSAR. However, traceability is supported from EAST-ADL’s lower 
abstraction levels to the implementation level elements in AUTOSAR. In this document we 
describe EAST-ADL, including a case study to show how it relates to AUTOSAR as well as other 
significant automotive standards and present current research work on using EAST-ADL in the 
context of fully-electric vehicles, the functional safety standard ISO 26262 and for multi-objective 
optimization. 
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1 Introduction 

EAST-ADL represents an Architecture Description Language (ADL) initially defined in the 
European ITEA EAST-EEA project. It was subsequently refined and aligned with the modeling 
approach of the AUTOSAR automotive standard [2] in national and international funded projects 
including the ATESST and MAENAD projects [1], [5]. It is maintained by the EAST-ADL 
Association [3]. 

EAST-ADL is an approach for describing automotive systems through an information model that 
captures engineering information in a standardized form. Aspects covered include vehicle features, 
functions, requirements, variability, software components, hardware components and 
communication. 

 

Figure 1: The EAST-ADL’s breakdown in abstraction levels (vertically) and in core system 
model, environment and extensions (horizontally). 

The functionality of the vehicle is described at different levels of abstraction and in different parts.  

The four abstraction levels covered by the EAST-ADL are (see Figure 1):  

 Vehicle Level 

Feature trees characterizing the vehicle content as it is perceived externally.  

 Analysis Level 

An abstract functional architecture defining systems from a functional point of view. 

 Design Level 

The detailed functional architecture allocated to a hardware architecture. 

 Implementation Level 

The implementation of the embedded system represented using AUTOSAR elements  

Each of the abstraction levels has a specific role. From the Vehicle Level stating what the vehicle 
should do through Analysis, Design and Implementation levels that define, at various level of 
abstraction, how this is done. Features on the Vehicle Level allow the organization of vehicle 
content in a solution-independent way. Requirements can be linked to features such as markets 
and brands as well as to technical features such as wipers or brakes.  
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The proposed abstraction levels and the contained elements provide a separation of concerns and 
an implicit style for using the modeling elements. The system description is complete on each 
abstraction level with respect to the concerns of that level.  

The EAST-ADL extensions include requirements, variability, safety, behavior, timing, and generic 
constraints. Such elements reference the core elements at all abstraction levels. The behavior 
extension support modes, which allows different requirements, behaviors and constraints to be 
active at different time instants.  

The core model at the Vehicle Level is organized around Features in the TechnicalFeatureModel. 
These represent the vehicle from a top-level perspective without exposing the realization. It is 
possible to manage the content of each vehicle and entire product lines in a systematic manner 
using sets of Feature Models with internal relations like needs and exclude, and configuration 
decisions across Feature Models.  

A complete representation of the electronic functionality in an abstract form is modeled in the 
Functional Analysis Architecture (FAA). One or more entities (Analysis Functions) of the FAA can 
be combined to realize Features in the TechnicalFeatureModel. The FAA captures the principal 
interfaces and behavior of the vehicle’s subsystems. It allows validation and verification of the 
integrated system or its subsystems on a high level of abstraction. Critical issues for understanding 
or analysis can thus be considered, with less risk of obscuring by implementation details. 

The implementation-oriented aspects are introduced while defining the Functional Design-
Architecture (FDA). The Features are realized here in a function architecture that takes into 
account efficiency, safety, legacy and reuse, purchasing strategy, hardware allocation, etc. The 
function structure is such that one or more functions can be subsequently realized by one or more 
AUTOSAR software components (SW-C). The external interfaces of such components correspond 
to the interfaces of the realized functions. 

The Hardware Design Architecture (HDA) should be considered parallel to function development. 
On the design level and down, the HDA forms a natural constraint for development and the 
hardware and application software development needs to be iterated and performed together. 
There is also an indirect effect of hardware on the higher abstraction levels. Control strategies or 
the entire functionality may have to be revised to be implemented on a real hardware architecture. 
This reflection of implementation constraints needs to be managed in an iterative fashion. 

The representation of the system implementation, the software architecture and its allocation 
details to the embedded system, is not defined by EAST-ADL but by AUTOSAR. Traceability is 
supported from implementation level elements (AUTOSAR) to Vehicle Level elements. Further, the 
EAST-ADL extensions for ISO26262, requirements, variability, etc. can be applied to the 
AUTOSAR elements. Traceability through the extension elements is applicable through the 
abstraction levels all the way down to implementation level.  

As a complement to the above, an environment model is required for verifying and validating 
Features across all abstraction levels. Verification could for example be carried out using 
simulation or formal analysis techniques. 

The Environment Model, sometimes referred to as plant model, captures the behavior of the 
vehicle dynamics, driver, etc. It represents all relevant elements interacting with the vehicle 
systems defined in the previously described architectures. Examples include a) the mechanical 
and hydraulic systems in the vehicle, b) the near environment including road surface and adjacent 
vehicles, and c) the far environment such as road traffic informatics. 

Different tasks will typically require different detail and scope of the Environment Model. For 
example, there may be a detailed vehicle and powertrain dynamics model to assess gear change 
performance and a low-detail dynamic model for fuel consumption assessment. The alternatives 
are selected using the variant management extension or using alternative Environment Models for 
each task. The same Environment Model can typically be used across several abstraction levels.  

After this short introduction to the EAST-ADL concepts, we go on to discuss the motivation and 
modeling concepts in more detail. 
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2 Challenges for Modeling Automotive Embedded Systems 

Automotive embedded systems have evolved enormously over the past decades. The use of 
electronics and software in automotive products has grown exponentially. A majority of automotive 
innovations are related to electrical and electronic systems. Virtually all vehicle systems rely fully or 
partly on electronics and software. It is obvious, that the vehicle’s electrical and electronic 
architecture will continue to grow in complexity, criticality and authority. 

To manage some of the challenges of automotive software, the AUTOSAR consortium has 
developed a standardized automotive software architecture. One of its main features is the support 
for componentization of the application software architecture, to favor reuse and assist 
collaboration and integration aspects. The software development effort is no longer bound to a 
specific hardware platform or a particular provider. A standardized software architecture and 
methodology is a first step towards meeting the challenges connected with the development of 
automotive systems, often distributed over several suppliers with different responsibilities. 

However, there still remains the critical issue of managing the overall engineering information to 
assist the system definition from the early phases. The early phases of system definition involve 
the most decisive steps in meeting safety challenges, controlling complexity and avoiding 
development errors and delays. Many stakeholders are involved here, and development is 
distributed over several departments and locations across several suppliers. 

While system modeling and model-based development is the trend in the automotive industry to 
solve this issue, current practice is typically to use a federation of different modeling approaches. 
Without a clear integration concept for heterogeneous set of models, its full value cannot be 
achieved. The modeling notations involved must be integrated in a way that correctly composes to 
a meaningful overall model, in terms of structure and behavior and additional aspects such as 
safety or variability annotations.  

To support complexity and facilitate component development, an adequate organization of the 
system model is important. Representing the system in several “models” at different abstraction 
levels is a way to ensure separation of concerns and allow smooth interaction between disciplines. 
Supporting a functional decomposition of the system is also important to hide implementation 
aspects while the functional aspects are addressed. 

Another aspect of system model organization concerns external annotations of the core stucture, 
for example timing and variability. By managing such information in external packages, the meta-
model as well as the user models are modular.  

Another challenge is the capability to use product line engineering. Today, component reuse is the 
state of the art in the automotive industry. The organization and structuring of a product line 
approach, from Feature selection up to decomposition into components, requires innovative and 
efficient techniques. 

Finally, an important challenge is assessing the dependability of the application. What is needed is 
a means to the early evaluation of system architectures, in terms not only of functional properties, 
but also non-functional ones (such as timing, resource and safety level). In this context, the 
application of the standard for functional safety (ISO DIS 26262) must be supported by appropriate 
techniques and a structured development approach. An architecture description language provides 
a means to represent the safety life-cycle information according to the requirements of the 
standard. 

Last but not least, tool support for engineering development is organized today as a patchwork of 
heterogeneous tools and formalisms. The meaning and organization of modeling elements must be 
agreed to ensure consistent syntax and semantics across tools, and thus drive the tool market to 
improve the available engineering support.  
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3 EAST-ADL Meta-Modeling Approach 

The EAST-ADL language is formally specified as a meta-model that captures domain specific (i.e. 
automotive) concepts. The meta-model follows guidelines originating from AUTOSAR for definition 
of templates. Modeling concepts are represented by the basic notions of MOF (www.omg.org/mof/) 
supplemented by the AUTOSAR template rules [2]. The meta-model thus fits as a specification of a 
domain specific tool environment, and also defines an XML exchange format. This domain model 
represents the actual definition of the EAST-ADL language and constitutes the heart of the EAST-
ADL language specification. 

The meta-model is organized in abstraction levels. On the lowest abstraction level, i.e. the 
implementation level, AUTOSAR elements are used to represent the software architecture. The 
abstraction levels can be seen as a vertical layering of information. A horizontal structure is based 
on core vs. environment vs. extensions.  

Depending on company needs, different strategies to apply the EAST-ADL are foreseen:  

(1) As a reference model, where a company will adapt the EAST-ADL information model 
and implement what they find useful, e.g. through a domain specific language or a 
custom tooling environment. 

(2) A partial deployment of the meta-model where the core parts at one or several 
abstraction levels are used according to their definition. One or several extensions may 
be attached to these, according to which information is needed.  

(3) EAST-ADL and  its corresponding exchange format is fully deployed. 

In addition to the domain model, the EAST-ADL language is also implemented as a UML2 profile. 
UML profiles are standard extension mechanisms in the UML2 language, in which domain-specific 
concepts are provided as tags applicable to a selected subset of UML2 elements (such as classes, 
properties, ports, etc.) giving them different meaning and extra properties. The profile allows users 
to do system modeling according to the EAST-ADL semantics by using off-the-shelf UML2 tools. 
Constraints are also part of the profile definition; this makes it possible to constrain the rich set of 
modeling constructs allowed by UML2 and to validate the conformance of the model. The EAST-
ADL profile is delivered as an XMI file ready for use in UML2 tools. 

In the definition of the EAST-ADL profile, the general strategy has been to provide stereotype 
properties even for properties already populated within the UML2 superstructure. In other words, 
the property values that appear when defining a UML2 user model are duplicated with semantic 
names in the stereotypes. This yields a user model that is quite complete even without a profile. 

This approach is in line with the intention of UML2 that the views and features of existing UML2 
tools can be used readily, including for example, UML2 activity diagrams and related profiles such 
as SysML (www.omgsysml.org) and MARTE (www.omgmarte.org). The applied profile adds 
automotive semantics to this self-contained UML2 user model. 
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4 EAST-ADL Modeling Concepts 

The modeling concepts of EAST-ADL fall into various areas, for example functional abstraction, 
timing modeling, requirements modeling, functional safety modeling, variability modeling and 
cooperative active safety systems. Below these will be elaborated with descriptions and conceptual 
figures. Some examples can be found in Section 8.  

 

4.1 Vehicle Feature Modelling 

Vehicle Features are used to characterize the vehicle content as it is perceived externally. For this 
purpose, a Technical Feature Model represents the Features that are realized by various systems. 
To characterize Vehicle Features, requirements and use cases and other annotations can be used. 
The Features are organized in a tree, where the basic semantic is that the child nodes of a tree 
together make up the parent. This is reflected by Realization semantics, where a function realizing 
a Feature is also responsible for Realizing its complete subtree. Similarly, Requirements on a 
Feature may be amortized over all its children, and the set of all Requirements on those children 
should be consistent with the Parent’s overall requirements.  

 A set of Product Feature Models can be used to configure a Technical Feature Model. Product 
Feature Models organize non-product aspects, such as brands, markets and ranges, and can be 
used to make systematic decisions on product content for a specific brand or market. 

4.2 Functional Abstraction 

EAST-ADL provides a means to capture the functional decomposition and behavior of the 
embedded system and the environment. 

 

 

Figure 2. Functional decomposition in EAST-ADL on analysis and design levels. 

 

At the Analysis Level, the Functional Analysis Architecture contains Functions that can be 
hierarchically composed and connected to each other. Functional devices represent sensors and 
actuators with their interface software and electronics, and these are connected to the 
environment. Figure 2 illustrates the entities involved and shows how they are connected. 
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The “Functions” can have two types of ports, FlowPorts and ClientServer ports to represent data 
exchange and client-server interaction respectively. FlowPorts provide or receive data according to 
its (single) datatype. ClientServer ports declare multiple operations, each with argument and return 
value with datatypes. The argument value is provided to the server function on the client call. A 
return value is received from the called function on its completion. The data exchange semantics is 
single buffer overwrite, i.e. the last written value is always used. 

The functions can be hierarchical, but the leaves have synchronous execution semantics, which 
means that they read inputs, calculate and provide outputs. They are triggered based on time or 
data arrival on ports. For FunctionFlow ports, input and output are provided asynchronously from 
sender to receiver. Calls to ClientServer ports on event-triggered functions are blocking until the 
execution time has expired. At this point, the return value is provided. If the server function is time 
triggered, the delay until triggering has to be added. 

In addition to the triggering and execution semantics, the data transformation inside the function 
needs to be defined. Such transfer function is typically defined by external tools using their 
respective notation for behavioral descriptions. A native behavioural notation has also been 
developed for EAST-ADL allowing direct definition of behavior, which is independent of which tool 
is used. These are denoted Behavioural Constraints, because they can be used to define behavior 
for several purposes including requirements, test results, Features and of course function behavior 
in Environment Models and Functional Analysis and Design Architectures.  

The behavior of the environment is captured in the EnvironmentModel. The Environment Model 
also contains Functions, but they represent vehicle dynamics, other vehicles, road-side IT systems, 
etc. 

The design level (see Figure 2) contains a more detailed functional definition of the system. 
Functions and LocalDeviceManagers represent application software in the Functional Design 
Architecture. “BasicSoftwareFunctions” are used to capture middleware behavior affecting 
application functionality. HardwareFunctions represents the logical behavior of hardware 
components and complete the logical path to the Environment Model with the controlled “plant” and 
surrounding elements. The HardwareDesignArchitecture represents the resources of the 
embedded computing platform, i.e. ECUs, communication networks, sensors, actuators and I/O to 
which the functions are allocated. The Hardware Design Architecture also reflects the physical 
topology of electrical elements and connectors. 

4.3 Traceability within the Model  

Because the EAST-ADL model integrates several aspects, different kinds of traceability is possible 
by investigating the relations of the model. Some examples include: 

 Requirements allocation: For elements like Hardware Component, Design Function or 
Analysis Function it is possible to see which Requirements it shall fulfill by following the 
Satisfy relations. 

 Requirements decomposition: The requirement set into which a parent requirement is 
decomposed is identified by the Derive relation.   

 Functional interaction: Connectors define which functions interact with a given function 
through input, output or client-server ports. 

 Hardware interaction: Hardware connectors define which hardware components that are 
physically connected to a given hardware component.  

 Functional allocation: For Hardware Components, it is possible to see which functionality it 
hosts by investigating the FunctionAllocation relations. On the same basis, the functional 
interface represented by a Hardware Component can be established by identifying the set 
of interfaces of its allocated functions. 

 Realizations: The elements at a lower abstraction level responsible for realizing a particular 
element can be found by inspecting the Realize relations.  



 EAST-ADL White Paper  

2013        13 (40) 

When referencing functional or hardware elements, there is a distinction between its definition, 
then called type versus its occurrence as an element in a product hierarchy, then called 
prototype. For example, a requirement regarding an ABS braking function in general is linked 
to its type definition, while a requirement regarding ABS braking on the rear axle, right side is 
linked to the specific prototype in the product hierarchy. Similarly, allocation of a function to a 
node must refer to a specific prototype, e.g. the front left ABS is allocated to the front left wheel 
ECU. 

4.4 Timing Modeling 

EAST-ADL provides support for model-specific engineering information, including non-functional 
properties that are relevant for the timing of automotive functions. Conceptually, timing information 
can be divided into timing requirements and timing properties, where the actual timing properties of 
a solution must satisfy the specified timing requirements. 

Modeling of timing requirements and properties at the functional abstraction levels of the 
architecture description language is done by means of the Timing Augmented Description 
Language, TADL developed by the TIMMO project [6]. At the implementation level, i.e. AUTOSAR, 
this is addressed by the Timing Extensions which were introduced in AUTOSAR release 4.0 [2]. 

Timing constraints are defined separately from the structural modeling and reference the structural 
elements of the EAST-ADL. The requirements modeling support in EAST-ADL allows for tracing 
from solutions as modeled in the structural model to requirements, and from verification cases to 
requirements. The TADL constraints fit in the requirement support as refinements of the 
requirements. 

The fundamental concepts for describing timing constraints are that of Events and Event Chains. 
On every level of abstraction, observable events can be identified, e.g. events that cause a 
reaction, i.e. a stimulus, and resulting observable event, i.e. a response. 

 

 

Figure 3. Event Chain with associated timing constraint. 

Timing requirements can be imposed on Event Chains, for example, specifying that the time 
between the occurrence of a stimulus event and the occurrence of the expected response event 
shall not exceed a specific amount of time, e.g. an end-to-end delay from a sensor to an actuator. 
In addition, requirements regarding the synchrony of events can be expressed, stating that a 
number of events shall occur “simultaneously“ in order to cause a reaction, or be considered as a 
valid response of a system function. For example, in case of a passenger vehicle, its brake system 
shall apply the brakes simultaneously, or the exterior light system shall simultaneously turn on and 
off the rear and front turn signal indicators. 

Figure 3 shows a simple example of an event chain with a reaction constraint. The timing elements 
extend a basic Functional Analysis Architecture. The “in event” refers to the reading of data on the 
in port and the “out event” to the delivery of data on the out port.   
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4.5 Requirements Modeling 

In order to support the development of complex automotive systems, EAST-ADL provides a means 
to requirements specification, i.e. for specifying the required properties of the system (at varying 
degrees of abstraction). The Requirements concepts are aligned with the SysML and 
Requirements Interchange Format (ReqIF) standards, but are adjusted to follow the meta-model 
structure of EAST-ADL. 

4.5.1 System Model Structure vs. Requirements  

The Requirement element is linked to any other EAST-ADL element using a Satisfy relation. This 
makes it possible to define solution independent requirements, organized according to Vehicle 
Features on the Vehicle Level. Solution requirements concerning pure functionality, independent of 
physical system topology can be defined on the Analysis Level and allocated to elements of the 
AnalysisFunction hierarchy. Requirements concerning detailed design are allocated to elements of 
the Functional and Hardware Design Architectures on Design Level. This provides a means to 
organizing requirements according to the functional decomposition of the vehicle; requirements 
concerning the physical infrastructure are organized according to the 
system/subsystem/component hierarchy of the hardware architecture. Detailed requirements on 
software and hardware implementation are allocated to elements of the implementation level.  

The requirement decomposition is formalized using a Derive relation, typically between 
requirements on different abstraction levels. 

4.5.2 Hierarchical Organization of Requirements 

Except for the implicit organization of requirements that follows from the structure of the satisfying 
elements discussed above, Requirements are organized in a flat list in one or several 
Requirements Models. Within one Requirements model, it is possible to define hierarchy as an 
“add-on” to the flat list. Using the RequirementsHierarchy construct, one or several (orthogonal) 
hierarchies can be defined. Each requirement may thus occur simultaneously in hierarchies for 
emission-related aspects, brand and range, environment aspects, etc.  

4.5.3 Requirement Representation 

Methodically, EAST-ADL allows a differentiation between functional requirements prescribing how 
and what to deliver, such as “ABS shall control brake force via wheel slip control”, and quality 
requirements prescribing how well or according to what characteristic to deliver, such as  “ABS 
shall reduce the stopping distance on snow by 40%”. There are several categories among the 
quality attributes like availability, configurability, ergonomy, etc. if a more specific marking is 
needed. 

Because requirement engineering is a complex process, highly integrated with company specific 
needs, it is necessary to be able to add company specific information to requirement elements. 
The User Defined Attribute concept of EAST-ADL provides a means to attaching attributes varying 
from simple booleans to complex data structures to each Requirement. This way it is possible to 
keep track of status, author, responsible, etc. of each requirement, according to predefined data 
templates given for the user element type.  

Requirements can be formalized by using the constraints of EAST-ADL, including timing, safety 
and behavior. The Refine relation links the requirement and the formalized constraint. It is also 
possible to link any EAST-ADL construct including functional or hardware hierarchies to a 
requirement, to indicate a mandatory aspect which requires explicit verification. 

4.5.4 Verification and Validation 
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EAST-ADL offers detailed means to model artifacts of verification and validation activities and to 
relate these artifacts to requirements. This facilitates planning and tracking V&V activities and their 
impact on the system parallel to the system’s development. 

A VVCase, decomposed into VVProcedures specifies how one or several requirements are verified 
or validated. The requirements are identified with The Verify relation links cases or procedures to 
one or several requirements, identifying how these are verified. 

The VVCase identifies which aspects of the system model is subject to verification using the 
VVSubject association. The particular test environment or experimental setup used for verification 
is identified by the VVTarget concept.  

VVCase can appear both as a specification of a test activity (abstract VVCase), and as a concrete 
test activity (concrete VVCase). In the latter case, test results are logged as VVActualOutcome and 
can be compared with VVIntendedOutcome for a given VVStimuli.. 

4.6 Functional Safety Modeling 

The overall objective of the support for functional safety modeling is to enforce explicit 
considerations of safety concerns throughout an architecture design process, including all safety 
related information that is necessary for developing a safety-critical system, in compliance with the 
Standard ISO 26262 (an international standard dedicated to functional safety for road vehicles, 
[4]). 

As an overall system property, safety is concerned with anomalies (e.g. faults, errors and failures) 
and their consequences under certain environmental conditions with the goal to mitigate risks. 
Safety is one particular aspect of system dependability that normally also encompasses reliability, 
availability, integrity, maintainability and security. Functional safety represents the part of system 
safety that depends on the correctness of a system in performing its intended functionality. In other 
words, it addresses the hazardous events of a system during its operation (e.g. component errors 
and their propagations). 

EAST-ADL facilitates safety engineering in terms of safety analysis, specification of safety 
requirements, and safety design. While promoting safety in general through its intrinsic architecture 
modeling and traceability support, EAST-ADL provides explicit support for efficient integration of 
functional safety activities along with the nominal architecture design and evolution. 

As illustrated in Figure 4, EAST-ADL provides language-level support for the concepts defined in 
ISO 26262, including vehicle-level hazard analysis and risk assessment, the definition of safety 
goals and safety requirements, the ASIL (Automotive Safety Integrity Level) decomposition and the 
error propagation. The information is included in the Dependability package, as an extension of the 
nominal architecture model. 
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Figure 4. Mapping of ISO26262 information to EAST-ADL abstraction levels. 

 

Following a top-down approach, the safety analysis starts at the Vehicle Level, beginning with the 
identification and description of the item. An item, as defined in ISO 26262, is a system or array of 
systems or functions that is of particular concern in regards to functional safety. Through hazard 
analysis and risk assessment activities, it is possible to preliminarily evaluate at Vehicle Level the 
“safety relevance” of the item under safety analysis, to define the safety goal (top-level safety 
requirement) for each hazardous event (hazard evaluated in different scenarios) and to classify 
them in terms of ASIL. Moreover, AnalysisLevel and DesignLevel of EAST-ADL support 
respectively the functional safety concept and the technical safety concept definition of ISO26262. 

 

 

Figure 5. EAST-ADL error model as a separate architecture view extending the nominal 
architecture model. 

 

EAST-ADL error modeling allows capturing detailed information about the failure behavior of the 
system and thus supports a safety analysis to determine whether technical safety requirements are 
met. This ErrorModel describes the generation and propagation of failures through the system. The 
relationships of local error behaviors are captured by means of explicit error propagation ports and 
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connections. Within an error model, the syntax and/or semantics of existing external formalisms 
can be adopted for a precise description of the error logic. The specification captures what output 
failures of the target architecture component are caused by what faults of this component. This, 
together with the error propagation links, makes it possible to perform safety simulations and 
analyses through external analysis tools. In an architecture specification, an error is allowed to 
propagate via design specific architectural relationships when such relationships also imply 
behavioral or operational dependencies (e.g. between software and hardware). 

The error modeling is treated as a separate analytical view (see Fig. 5). It is not embedded in a 
nominal architecture model but seamlessly integrated with the architecture model through the 
EAST-ADL meta-model. This separation of concerns in modeling is considered necessary in order 
to avoid some undesired effects of error modeling, e.g. relating to the comprehension and 
management of nominal design, reuse, and system synthesis (e.g. code generation). 

Given an error model, the analysis of the causes and consequences of failure behaviors can be 
automated through tools. There is currently a (prototype) analysis plug-in in the Eclipse 
environment allowing the integration of the HiP-HOPS tool (Hierarchically Performed Hazard Origin 
and Propagation Studies) for static safety analysis in terms of FFA, FTA, and FMEA. The analysis 
leverage includes fault trees from functional failures to software and hardware failures, minimal cut 
sets, FMEA tables for component errors and their effects on the behaviors and reliability of the 
entire system. 

In EAST-ADL, a safety requirement derived from the safety analysis has attributes specifying the 
hazard to be mitigated, the safety integrity level (ASIL), operation state, fault time span, emergency 
operation times, safety state, etc. The safety requirement is then traced to or used to derive other 
nominal requirements, e.g. relating to safety functions and performance. 

4.7 Variability Modeling 

EAST-ADL variability management starts on the Vehicle Level, where model range Features and 
variability are represented. At this point, the purpose of variability management is to provide a 
highly abstract overview of the variability in the system such as the complete system together with 
dependencies between these variabilities. A variability in this sense is a certain aspect of the 
complete system that changes from one variant of the complete system to another. “Abstract” here 
means that, for an individual variability, the idea is not to specify how the system varies with 
respect to this variability but only that the system shows such variability. For example, the front 
wiper may or may not have an automatic start. At Vehicle Level, the impact of this variability on the 
design is not defined; only the fact that such variability exists is defined by introducing an optional 
Feature named RainControlledWiping. This is subsequently validated and refined during analysis 
and design.  

One or more Feature Models may be defined on the Vehicle Level: the so-called core Technical 
Feature Model is used to define the complete system’s variability on a global level from a technical 
perspective, whereas one or more optional Product Feature Models can be used to define views 
on this technical variability which can be tailored to a particular view-point or purpose, e.g. the end-
customer perspective. 

While the details of how variability is actually realized in the system are largely suppressed at the 
Vehicle Level, they are the focus of attention when managing variability in other areas of the 
development process. In fact, specific variability may lead to modifications in any development 
artifact, such as requirements specifications and functional models. Here, describing that a specific 
variability occurs is not sufficient; it is necessary to describe how each variation affects and 
modifies the corresponding artifact. 

The purpose of Feature Modeling is to define the commonalities and variabilities of the product 
variants within the scope of a product line. Feature models are normally used on a high level of 
abstraction, as described above for Vehicle Level variability. However, in EAST-ADL, they are also 
used on Analysis and Design levels and acquire a much more concrete meaning there. 
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Configuration decision modeling, on the other hand, is aimed at defining configuration: the 
configuration of a Feature Model, fT – i.e. the selection and deselection of its Features – is defined 
in terms of the configuration of another Feature Model, fS. A configuration decision model can thus 
be seen as a link from fS to fT that allows us to derive a configuration of fT from any given 
configuration of fS. In EAST-ADL, this mechanism is used to define how a certain configuration on 
a higher abstraction level affects the binding of variability in lower-level components. 

Variability management on the artifact level is driven by the variability captured at the Vehicle 
Level. This means that the main driver for variability and also variability instantiation is the Vehicle 
Level Feature Model. Variability on the artifact level essentially consists of the definition of variation 
points within these artifacts. In addition, Feature Models can be attached to functions in order to 
expose the variability within these functions and hide the actual structuring, representation and 
binding of this variability within a function. This way, the benefits of information hiding can now be 
applied to the variability representation and variability binding within the containment hierarchy of 
functions in the EAST-ADL Functional Analysis Architecture and Functional Design Architecture 
(called compositional variability management). 

4.8 Behavior Constraint Modeling 

The reasoning and analysis of dependability and performance involve many aspects in a system’s 
lifecycle. To this end, EAST-ADL allows precise and integrated annotations of various behavioral 
concerns related to requirements, application modes and functions, implementation and resource 
deployment, and anomalies. The approach is architecture centric as all behavior annotations are 
formally connected to a set of standardized system artifacts and lifecycle phases.  This is 
fundamental for many overall design decisions, such as requirements engineering, component 
compositionality and composability, design refinements, safety engineering, and maintenance.  
From a wider perspective, this language support enables an integration of many existing modeling 
and analysis technologies, such as those from computer science and electronic engineering, by 
making it possible to trace and maintain the related engineering concerns and analytical 
information coherently using EAST-ADL. 

Based on a hybrid-system semantics, the EAST-ADL support for the annotations of behavioural 
concerns consists of three categories of behavior constraints: 

 Attribute Quantification Constraint – relating to the declarations of value attributes and the 

related acausal quantifications (e.g., U=I*R).   

 Temporal Constraint – relating to the declarations of behaviour constraints where the 

history of behaviours on a timeline is taken into consideration. 

 Computation Constraint – relating to the declarations of cause-effect dependencies of data 

in terms of logical transformations (for data assignments) and logical paths. 

Each of these behaviour constraints can be associated with time conditions given in terms of 
logical time, of which the exact semantics is given by the existing EAST-ADL support for timing 
definition (e.g. the triggering, and port data sending and receiving events of a function). Owing to 
the formal semantics, one can explicitly define the model transformation from EAST-ADL behavior 
model to other model formats of external analysis methods and tools, such as hazard analysis, 
response time analysis, model checking, test-case generation, etc.  
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5 Methodology 

The purpose of the EAST-ADL methodology is to give guidance for the adoption of EAST-ADL, i.e. 
how to use the language for the construction, validation and reuse of models for automotive 
embedded software. The purpose is thus not to impose a specific development process, but to 
show sequences of steps that can produce sound and useful EAST-ADL models. The EAST-ADL 
methodology provides understanding for the EAST-ADL language and serves as building blocks 
for a more complex and complete process definition.  

The EAST-ADL methodology is organized in phases that are derived from a typical V-model for 
automotive systems development, see Figure 6. The development flow is idealized to allow 
compact and systematic description, but will in practice be subject to iterations, top-down or 
bottom-up application as appropriate.  

Vehicle Phase

Analysis Phase

Design Phase

Implementation Phase

Integration

 

Figure 6. Visualization of automotive system development according to the V-model. 

 

The core aspects of each phase is decribed below: 

 The Vehicle phase involves analysis of external requirements based on which a Technical 

Feature Model is constructed. This tree structure shall be organized in an adequate way 

and also capture necessary or intended Feature configurations. In addition, for each 

Feature a set of requirements is specified. 

 The Analysis phase results in a FunctionalAnalysisArchitecture which specifies a realization 

of the Features. The solution is a logical representation of the system to be developed and 

there is no distinction between hardware or software or about the implementation of 

communication. 

 The Design phase involves defining the FunctionalDesignArchitecture specifying a solution 

to the requirements in terms of efficient and reusable architectures, i.e. sets of (structured) 

HW/ SW components and their interfaces, a hardware architecture, and a mapping from 

functional components to HW/SW components. The architecture must satisfy more detailed 

constraints. 
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 The Implementation phase results in the HW/SW implementation and configuration of the 

final solution. This part is mainly a reference to the concepts of AUTOSAR, which provides 

standardized specifications at this level of automotive software development. 

To relate specific methodological aspects like safety and timing to the core activites, a generic 
method pattern has been applied for each phase:  

1. Refine, Introduce and Validate Requirements  
2. Create Solution 
3. Attach Requirements to Solution 
4. Create supporting models 
5. Analyze 
6. Verify 
7. Specify Requirements 

The set of steps is the same for each phase, and also for each aspect (safety, timing, variability, 
etc.). The core and each of the complementary aspects forms “swimlanes” in each phase, see 
Figure 7. The principle is that the user assesses the steps related to the core and each relevant 
aspect, and then implicitly “weaves” an appropriate set of steps for her or his needs. The notation 
for the methodology description is Business Process Modeling Notation (BPMN).  

 

 

Figure 7. An example of metholdology "Swimlanes" in Vehicle phase 

While the methodology tries to be comprehensive in handling the construction phases, the 
integration activities are only covered inasmuch as they involve V&V activities and the relation to 
V&V-artifacts defined in the construction phases. 
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6 Support for the development of FEVs 

Electrification is the dominant trend of the automotive industry.  Hybrid-electric vehicles (HEVs) 
and Full Electric Vehicles (FEVs) will become more popular in the future to alleviate the crisis of 
fuel and pollution.  The challenge associated with this trend is larger flexibility and hence 
complexity in vehicle embedded control systems.  The complexity comes from the large number of 
system configurations, communication patterns, and dynamic reconfigurations.  The behavior 
constraint package of EAST-ADL must be able to facilitate the modeling and analysis of such 
complex behaviors. 

A unique topic of HEVs and FEVs is the efficient management of the electrical energy, which may 
be stored in battery or ultra-capacitor.  The electrical energy is used to propel the vehicle and load 
the electric auxiliaries.  Smart control methods and structures are studied to optimally use the 
limited electrical energy in the storage in order to reduce the fuel consumption, extend the range, 
and keep the drivability.  The behavior constraint package allows the designer to model and 
analyze the architecture of the energy management control strategy in HEVs and FEVs.  

The development of FEVs requires that some specific aspects concerning the electric and 
electronic system shall be dealt with, which imply the need of modeling, analyzing and designing 
the system according to several specific requirements. It is also useful to follow a development 
process able to provide an effective guideline, which addresses the different aspects, thus helping 
to meet the requirements and cover efficiently the specific needs. 

Therefore, EAST-ADL has some extensions to support the development of FEVs. The main 
purpose is to allow the application of the various standards and regulations that are specific of 
FEVs. In particular, the following subjects are addressed: 

High voltage 

This is a key issue and concerns electric insulation, electric shocks, bonding and grounding. 
Several standards establish design and test rules, and require proper provisions to ensure safety, 
also by means of insulation monitoring system, warning and recovery actions. The standards 
considered are in particular ISO6469-2 and EN 61851. 

Propulsion 

Propulsion is a function to be developed according to the general methodology valid for any 
automotive application. In addition, some specific points have to be taken into account, such as the 
operating modes and the drivetrain interlock.  

Regenerative braking 

Special care has to be taken for the integration of the Regenerative Braking System with ABS, 
depending also on the operating mode for the intervention of RBS. Regulation R13 H deals with 
the interaction between the two systems. Testing is covered by FMVSS n. 135. 

Regenerative Energy Storage System 

Several standards are focused on this subject, especially ISO 6469-1, J2289, ISO 8714, which 
require introduction of some protection devices such as overcurrent interruption, over-discharge 
detection provisions, proper fuses and connectors. 

Charging 

The process guides the designer as to adopt the charging modes, to define the operation states 
and to meet the grounding and insulation requirement so as to comply with EN 61851 and ISO 
6469-3. Charge coupler, in particular, could be compliant with SAE J2777, as concerns control 
pilot, proximity detection, charge management and indicators. Communication with the charging 
station should comply with SAE J1772, SAE J1773, and SAE J2293.  
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Anti-theft system 

This system is required to prevent the unauthorized use of electric vehicles by means of locking 
motor operation and steering. The requirement comes from FMVSS No. 114 and R 116, and is 
intended to ensure safety by limiting the risk of improper use. 

Vehicle performance 

Several standards deal with EV performance including terms and definitions, test conditions and 
test procedures. The performance factors particularly considered are energy, range and speed. 
Some of the reference standards are ISO 8715, ISO8714, EN 1821-1, EN 1986-1, ISO 12405-2.   

Hazard Analysis and Risk Assessment 

Although the hazard analysis is a task to perform in the safety life cycle, specific points are 
considered such as regenerative braking, insulation, charging system, battery system, according to 
some of the above mentioned standards, which require to perform the hazard analysis and adopt 
proper safety measures. 
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7 Related Approaches 

One key aspect of the development of EAST-ADL is to benefit from existing methods and 
techniques and also to influence emerging approaches. Whenever possible, existing and state-of-
the-art solutions were reused and integrated in the language. This favors the wide use of the 
language, allows the use of available tools and prepares for a sound standardization process. 

Efforts like AUTOSAR [2], TIMMO [6], and ISO 26262 [4] are sources both for the alignment of 
domain specific challenges and for the integration of technologies and methodologies in the 
development of EAST-ADL. 

AUTOSAR is a de-facto standard for automotive embedded systems and addresses the needs for 
a process-safe integration of functions. It provides a standardized platform for the specification and 
execution of application software, an integration method for software components and hardware 
resources, and also the interchange formats that these require. While adopting AUTOSAR for the 
implementation level abstractions, the EAST-ADL language complements the AUTOSAR initiative 
by providing higher-level abstractions, analysis and life cycle management support. In effect, it 
allows an AUTOSAR-compliant software architecture being extended with models relating to the 
design of functionality, timing and safety, the structuring and allocation of application, as well as 
the management of variability, requirements, traceability and verification and validation. 

AUTOSAR is used to represent the final software architecture of automotive embedded systems. 
As such, it defines the software components, their interfaces, execution timing, middleware (basic 
software) interactions, etc. The model is sufficiently detailed to automatically generate and 
configure the platform software and integrate on ECUs.  

The EAST-ADL function design architecture acts as the functional specification of the AUTOSAR 
software architecture.  As such, it carries functional and non-functional requirements stemming 
from user needs, control design, safety design, re-use, etc. Software components may have to be 
organized differently, have different interfaces, timing, interaction, etc. in order to meet the 
architectural constraints of the software architecture.  Using an EAST-ADL functional model, such 
implementation specific adjustments can be made in the AUTOSAR model without replacing the 
fundamental properties. 

Defining a software architecture requires a large effort with much detail in the solution. The EAST-
ADL functional model is a way to quicker make architectural exploration. The Design Level models 
can then be used to autogenerate much of the content at  implementation level.  

EAST-ADL integrates the results of TIMMO, which is an ITEA project focusing on the timing 
constraints and timing properties in automotive real-time systems. TIMMO has developed a formal 
description language, TADL, and a methodology for dealing with the timing concerns on the basis 
of EAST-ADL1. It has been developed in a close collaboration with AUTOSAR. The follow-up 
project TIMMO-2-USE is further developing the TADL language, in close collaboration with the 
MAENAD project, developing EAST-ADL. 

The emerging international standard ISO 26262 [4] is carefully considered in EAST-ADL. The key 
content includes an automotive safety lifecycle, an automotive specific approach for determining 
risk classes and deriving safety requirements based on ASILs (Automotive Safety Integrity Levels), 
and a set of requirements for validation and confirmation measures to ensure a sufficient and 
acceptable level of safety being achieved. 

To support behavior modeling, EAST-ADL provides dedicated behavior elements that facilitate the 
description of the relationship between behavioral and structural models. The EAST-ADL functions 
have synchronous execution semantics, and language concepts are available to define their 
triggering and timing. By clearly distinguishing between component execution and component 
logical computation, EAST-ADL allows the integration of behavior models from off-the-shelf tools 
like SCADE, ASCET, Simulink, etc., according to lifecycle stages and stakeholder needs. For 
continuous-time behavior (e.g., for the vehicle dynamics under control), related modeling 
techniques from Modelica, which combines acausal modeling with object-oriented thinking, have 
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been adopted. The Functional Mockup interface, used for co-simulation and model exchange via 
Functional Mockup Units (FMUs) has been investigated, and a prototype transformation tool has 
been developed. EAST-ADL also provides tool prototypes for model transformation to Simulink and 
the SPIN (Simple PROMELA Interpreter) model checker. 

A further standardization effort being taken into consideration is the SAE “Architecture and 
Analysis Description Language” (AADL), which has its roots in the avionics domain. Compared to 
EAST-ADL, AADL has a more narrow scope: no explicit support is provided for variability 
management or requirements refinements and traceability. Specifics for automotive systems such 
as the networks are weakly supported. The AADL is not designed for mass-produced systems and 
therefore has less emphasis on optimized overall solutions e.g. by considering compact runtime 
systems. For the automotive domain, the clash with AUTOSAR concepts is also a problem. 
However, wherever applicable, AADL concepts were reused, e.g. for dependability modeling.  

EAST-ADL allows the adoptions of existing formalisms for the underlying semantics and provides 
support for model transformation and tool interoperability with the external safety analysis 
techniques. In particular, HiP-HOPS and the AADL’s Error Model Annex have been carefully 
considered in the development of EAST-ADL. They both enable the modeling of system failure 
behavior and allow analysis of that behavior  by using tools. 

A tool plug-in for HiP-HOPS has been developed to support both FTA and FMEA. Other 
approaches to model-based safety analysis and verification that have been investigated for the 
development of EAST-ADL include ISSAC and its predecessor ESACS in the aerospace industries 
(where the goal was to develop a formal methodology and tools for the safety analysis of complex 
aeronautical systems), the ASSERT project (with similar goals but more focused on software 
intensive systems specified in AADL), the SETTA project (focusing on the use of time-triggered 
architectures in automotive systems), and the SAFEDOR project (which aimed to develop new 
practices for the safety assessment of maritime systems). 

SPEEDS (Speculative and Exploratory Design in Systems Engineering) is a European project 
aiming at providing support for modeling and analysis of complex embedded systems through the 
usage of formal analysis tools. EAST-ADL complements the SPEEDS approach with automotive 
architecture and lifecycle information. The techniques of SPEEDS have been considered in EAST-
ADL for behavior modeling (i.e., with the hybrid automata variant) and for a more formal 
specification of requirements and constraints (i.e., with temporal logics scripts for contracts of 
functionality, safety, and timing). 

MARTE is a UML profile for Modeling and Analysis of Real-Time and Embedded systems.  MARTE 
models real-time constraints and other embedded systems characteristics, such as memory 
capacity and power consumption. MARTE supports modeling and analysis of component-based 
architectures, as well as a variety of different computational paradigms (asynchronous, 
synchronous, and timed). The EAST-ADL UML-profile is released as an annex to MARTE, done in 
the ATESST2 and ADAMS projects.  

The OMG Systems Modeling Language (OMG SysML) is a general-purpose graphical modeling 
language for specifying, analyzing, designing, and verifying complex systems that may include 
hardware, software, information, personnel, procedures, and facilities. Compared with EAST-ADL, 
SysML is more generic and high-level, so EAST-ADL can be seen as a specialization and subset 
of SysML for automotive embedded systems. In fact, the first versions of EAST-ADL and SysML 
were defined in parallel with some interaction between the teams. The EAST-ADL function 
architecture with ports and datatypes are influenced by SysML, as well as the requirements 
modeling.  

There are also many other research oriented architecture description languages or frameworks 
supporting the formal specification and analysis of software systems.  For example, Wright (by 
Carnegie Mellon University) is based on CSP to perform formal verifications including deadlock 
detection and behavioral refinement. SaveCCM (by Mälardalen University) is a component-based 
modeling language tailored for automotive embedded control applications, which exploits the real-
time model checker UPPAAL for specifying and verifying real-time constraints. While helpful for 
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developing automotive embedded systems, these approaches are limited to software aspect and 
hence lack the support to the design of complex embedded systems in a broader perspective, 
which further requires the information of requirements, functional design, hardware architecture, 
resource constraint, communication relationship, and software to hardware binding. On the 
contrary, facilitating system integration in the context of automotive OEMs is the strength of EAST-
ADL. In addition, the behavior constraint specification of EAST-ADL is not bound to one analysis 
tool. It is comprehensive and fiexible for utilizing various mature analysis tools with complementary 
objectives, such as Simulink, SPIN, UPPAAL, and HiP-HOPS. In particular, the support for 
behavior modeling by EAST-ADL, based on hybrid automata, is much effective than many state-of-
the-art approaches. For instance, Darwin (by Imperial College London) is a component-based ADL 
supporting both structural and behavioral modeling of parallel software systems. The behavioral 
specification of Darwin is however limited to discrete-event formalism and LTL properties. For 
example, Darwin cannot specify the dynamics of the state of charge (SoC) of a battery according 
to the current through it. This type of information is simply out of the scope of Darwin. CHARMY 
(by University of L'Aquila) is a design and verification framework for checking the potential design 
inconsistencies between the behavior specifications of individual components and the logical 
constraints on the interactions of the components. The EAST-ADL support, however, is more 
specific. For example, the behavior of the elementary function must be deterministic and the 
communication must be asynchronous data transfer. These restrictions in EAST-ADL greatly 
simplify the complexity of SPIN transformation. 
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8 Example Model  

On the following pages, various diagrams from an EAST-ADL model will be shown. The model and 
diagrams are created by using the Papyrus UML tool. 

8.1 Overall Model 

Figure 8 provides a package structure overview of the expected EAST-ADL modeling elements for 
the braking system architecture, as well as its associated requirements, variability and other non-
functional constraints (e.g., timing and dependability), and verification & validation (V&V) cases. 
The SystemModel (within the 0_TopPackage) contains the entire braking electrical/electronic 
system architecture, for which specifications at various abstraction levels are applied. Figure 9 
provides a graphical representation of this multi-level braking electrical/electronic system 
specification and its related Environment Model (EnvironmentBBW).  

 

Figure 8: An overview of packages of an EAST-ADL model in Papyrus. 
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Figure 9: The braking electrical/electronic system and its environment in Papyrus. 

EAST-ADL supports requirements, V&V cases, and the annotations of variability and other non-
functional constraints through separate modeling packages shown in Figure 10. A requirement 
model specifies the conditions or capabilities that must be met or possessed by a system or its 
component. In a model-based approach, requirements are derived, refined, mapped, validated and 
verified along with the progress of system design. The specifications of variability and other non-
functional constraints augment the multi-level system architecture specification with analytical 
information (e.g. timing, reliability, and safety integrity) for early quality predictions and contract 
declarations. Normally, an analytical model should have its level of abstraction according to its 
target artifacts. 

 

 

Figure 10: An overview of system model and related EAST-ADL packages for the 
specifications of requirements, V&V cases, and the annotations of variability and other non-
functional constraints in Papyrus. 

 

8.2 Vehicle level 

A Vehicle Level specification constitutes the topmost system description and manages the 
Features of an entire product family. In Figure 11, the Technical Feature tree of the target braking 
system is shown. Each Vehicle Feature (VehicleFeature) denotes a functional characteristic, such 
as the functions, or non-functional properties, to be supported.  While a braking control Feature 
(BrakingControl) is needed for the vehicle longitudinal control, regenerative braking control 
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(RegenerativeBraking) is a Feature for power control in FEV, allowing the kinetic energy produced 
by braking to be converted to electrical energy and stored in capacitor or/and battery. As shown in 
Figure 11, the relations of Features are supported by Feature Links (FeatureLink). In a Feature link 
definition, the precise semantics of a Feature relationship is given by the type attribute (Kind) and 
the direction attribute (isBidirectional). 

  

Figure 11. Vehicle Feature Model of the Regenerative Braking System in Papyrus. 

Requirements at the Vehicle Level are directly based on system use cases and allocated to vehicle 
Features denoting the expected system functions. See Table 1 for a list of requirements on braking 
control. By EAST-ADL, the relationships of a requirement in regard to other requirements, system 
artifacts, more detailed analytical models, and V&V cases are explicit supported.  
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Table 1: Top-level braking control requirements. 

ID Description 
Req#1_BaseBraking "The system shall provide a base brake functionality where the driver indicates 

that he/she wants to reduce speed and the braking system starts decelerating 
the vehicle" 

Req#2_DriverBrakeRequest "The driver shall be able to request braking" 

Req#3_Anti-LockBraking "The system shall be an anti-lock braking system (ABS) by preventing the 
wheels from locking while braking" 

Req#4_BrakeReactionTime "The time from the driver's brake request until the actual start of the 
deceleration shall be ≤ 300ms.(Value derived from expert judgment)" 

Req#5_TimeToStandstill "The time to stadstill shall follow the recommendations in EU braking systems 
Directive 71/320 EEC. The Swdish Road Administration claims that a factor of 3 
(on braking distance) is acceptable for ice" 

Req#6_OperationofBrakePedal "The Operator shall be able to vary the desired braking force using the brake 
pedal. A fully pressed pedal means maximum brake force." 

Req#7_BrakeRelease "When the brake pedal is not pressed, the brake shall not be active." 

 

While a Feature tree model specifies the composition of system functions and their logical 
dependencies, it often implies the refinement of Vehicle Level requirements. With EAST-ADL, the 
derived/derived by relationship of requirements is given by a dedicated requirement relationship: 

DeriveRequirement. When such a requirement relationship is declared, a modification of the 
supplier requirement would have effects on the derived client requirements. Figure 12 shows the 
requirements model capturing four derived requirements and their relationships to a common 
supplier requirement and to each other. 

 

Figure 12: A model of braking performance requirements in Papyrus. 

Figure 13 shows the allocations of functional and non-functional requirements to the braking 
control and its sub-Features through the Satisfy links.  
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Figure 13: Linking  braking requirements to Vehicle Features in Papyrus. 

In EAST-ADL, a Satisfy relationship signifies the relationship between a requirement and an 
architectural element intending to satisfy the requirement. Requirements can also be inherited 
along with the Feature configuration hierarchy. For example, the requirements 
Req#1_BaseBraking and Req#2_DriverBrakeRequest, shown in Figure 13, should also be 
satisfied by the children of BrakingControl, such as the AdvancedBraking and the BasicBraking.  

8.3 Analysis Level 

As a step towards system realization, the Vehicle Level Features are realised by some 
interconnected abstract functions at the Analysis Level, specifying the corresponding input 
functions, application functions, and output functions for each Vehicle Level function in an 
implementation independent way. For the target braking system, the vehicle Features of concern 
are implemented by a set of Analysis Functions shown in Figure 14 and Figure 15. 
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Figure 14: Advanced Braking Feature and the specification of its functional realizations in 
Papyrus. 

 

Figure 15:Regenerative Braking Control Feature and the specification of its functional 
realizations in Papyrus. 

Figure 16 shows the specification of functional architecture in EAST-ADL for the braking system 
(See also D6.1.1 for an overview the functional operation concept).  
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Figure 16: Functional Analysis Architecture specification of the Regenerative Braking 
System in Papyrus. 

In EAST-ADL, system boundaries are explicitly defined by means of Functional Devices 
(FunctionalDevice). Through Functional Devices, an Analysis Function interacts with the   physical 
environment. Figure 17 shows the connections between Functional Devices and the  physical 
environment. 
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Figure 17: Connecting Analysis Functions with Environment in Papyrus. 

To define the timing requirements and timing design, constructs like TimingConctraint, EventChain 
and Event are available in EAST-ADL. 

 

Figure 18. Synchronization and End-to-end timing from pedal to brake actuators 

8.4 Design Level 

The Design Level architecture further details the Analysis Level design by taking the software and 
hardware resources into consideration. (See also D6.1.1 for an overview the related design 
concept). 
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Currently, the documentation corresponds to a single wheel brake by wire model. Work is under 
way to extend to a full four-wheel model. 

8.4.1 Functional Design Architecture 

Figure 19 shows the FunctionalDesignArchitecture. The model focuses on the base braking and 
does not include energy regeneration functionality.  

 

Figure 19. Functional Design Architecture of the Regenerative Braking System in Papyrus. 

 

Figure 20 shows the period times of the included functions.  

 

Figure 20. Period times of functions 
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Figure 21 (close-up) and Figure 22 (overall) shows timing constraints for end-to-end response 
requirements of the brake functionality. Figure 22 also shows synchronization requirements and a 
brake-down of the end-to-end timing budget. 

 

Figure 21. Functional Design Architecture with end-to-end timing 

 

Figure 22. Functional Design Architecture with end-to-end timing 
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8.4.2 Hardware Design Architecture 

Figure 23 shows an initial HardwareDesignArchitecture. 

 

Figure 23: Hardware Design Architecture of the Braking System in Papyrus. 

 

8.4.3 Allocation 

Allocation at the Design Level is represented in Figure 24, where function prototypes of the 
FunctionalDesignArchitecture are allocated to nodes in the HardwareDesignArchitecture. 

 

Figure 24: Function-to-node Allocation in the Braking System in Papyrus. 

 

8.5 Implementation Level 

The implementation level modeling relies on AUTOSAR model elements, which are normally 
edited in AUTOSAR tools. Below is a Papyrus Model based on an AUTOSAR UML Profile. 
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8.5.1 AUTOSAR Software Component Template 

Figure 25 shows an AUTOSAR software composition for the brake-by-wire system. The 
components are automatically generated according to the pattern “one elementary function – one 
runnable – one atomic Software component”. For this reason the name and structure from Design 
Level remains, but in a later refinement, the structure would be adjusted to better cope with the 
architectural constraints of the software implementation.   

 

 

Figure 25. AUTOSAR Software Component Template of the Braking System 
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