

Grant Agreement 260057

Model-based Analysis & Engineering of Novel Architectures

for

Dependable Electric Vehicles

Report type Deliverable D5.3.1

Report name EAST-ADL Implementation in

SystemWeaver

Dissemination level PU

Status Final

Version number V 4.0

Date of preparation 2014-02-17

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 2 (38)

Authors

Editor

Nigsti Ayele

E-mail

nigsti.ayele@systemite.se

Peter Lindqvist peter.lindqvist@systemite.se

Jan Söderberg jan.soderberg@systemite.se

Authors

Nigsti Ayele

E-mail

nigsti.ayele@systemite.se

Peter Lindqvist

Jan Söderberg

Peter.lindqvist@systemite.se

jan.soderberg@systemite.se

Reviewers

Sara Tucci-Piergiovanni

E-mail

sara.tucci@cea.fr

Henrik Lönn henrik.lonn@volvo.com

The Consortium

Volvo Technology Corporation (S) Centro Ricerche Fiat (I)

Continental Automotive (D) Delphi/Mecel (S) 4S Group (I)

ArcCore AB (S) MetaCase (Fi) Systemite (SE) CEA LIST (F)

Kungliga Tekniska Högskolan (S) Technische Universität Berlin (D) University of Hull (GB)

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 3 (38)

Revision chart and history log

Version

0.1

0.2

0.3

0.4

1.0

2.0

2.0

2.0

3.0

4.0

4.0

Date

2011-05-31

2011-09-01

2011-09-14

2011-09-26

2011-09-28

2012-06-15

2012-08-15

2012-12-04

2013-03-28

2014-02-17

2014-02-21

Reason

Initial version

Updated metamodel mapping

Updated metamodel elements mapping

Updated to full metamodel implementation status

Updated of installation information and User Instructions

SystemWeaver tutorial for EAST-ADL, version 1.0

Updated the meta-model to 2.1.10 implementation

Dependability implementation presented for review on MS6.5

M30 Release

Final Release for review updated with final development status

Final release, updated after review

Approval Date

Henrik Lönn 2014-02-21

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 4 (38)

Table of contents

Authors .. 2

Revision chart and history log .. 3

Table of contents ... 3

1 Introduction .. 6

1.1 Background .. 6

1.2 Purpose .. 6

1.3 Abbreviations ... 6

2 SystemWeaver supporting East-ADL ... 7

2.1 Introduction to SystemWeaver ... 7

2.2 How to install .. 7

How to login? ... 8

2.3 EAST-ADL supported by SystemWeaver strong meta-model ... 9

2.4 Collaborative Environment for MAENAD .. 9

3 Meta model mapping concepts for SystemWeaver ...10

4 Mapping Principles ..11

4.1 Limitations and inherent properties of the SystemWeaver platform ...11

4.2 Concept Mapping ..12

4.3 Element Mapping and Implementation status ..14

4.3.1 SystemModeling ..14

4.3.2 FeatureModeling ..15

4.3.3 VehicleFeatureModeling ..15

4.3.4 FunctionModeling ..15

4.3.5 HardwareModeling ...18

4.3.6 Environment ..19

4.3.7 Behavior ..19

4.3.8 Variability ...19

4.3.9 Requirements ..20

4.3.10 Dependability ...20

4.3.11 ErrorModel ...21

4.3.12 UseCases ..21

5 View Examples ...22

5.1 Overview ...22

5.2 Generic views ..22

5.3 Configurable standard views ..23

5.4 Custom views: Graphical Feature View ...27

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 5 (38)

6 Model Transformation ...29

6.1 Transformation Architecture ..30

6.2 Meta-model mapping ...31

6.3 EAXML2SystemWeaver Transformation ...32

6.4 SystemWeaver2EAXML Transformation ...33

6.5 Transformation Coverage of the EAST-ADL meta-model ..34

7 Current status and Future plan ..36

7.1 Current Status ...36

7.2 Future plan ..36

8 Conclusions & Summary ...37

9 Reference ...38

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 6 (38)

1 Introduction

This document describes the implementation of the complete EAST-ADL meta-model in

SystemWeaver and the model transformation implemented.

1.1 Background

There are modeling-tools now cooperating in the MAENAD project which have been used by

customers (OEM’s, subcontractors etc.) for many years in the automotive market. The tools will

be used to verify and validate the EAST-ADL meta-model. SystemWeaver is one among these

tools.

1.2 Purpose

This document constitutes one part of the Deliverable D5.3.1 on Tool adaptations for EAST-ADL.

The tools in the MAENAD project in the purpose of making the EAST-ADL language more

useable to OEM’s and subcontractors in business projects.

This part of D5.3.1 consists of a full EAST-ADL meta-model implementation, of SystemWeaver. It

also describes the status of the bidirectional model transformation.

Understanding that the purpose to have the chosen tools in MAENAD, is to make the EAST-ADL

more useable to OEM’s and subcontractors in business projects. To realize interoperability

among tools model transformation is implemented.

1.3 Abbreviations

SW – SystemWeaver

EAXML – EAST-ADL xml

EAST-ADL – Embedded Automotive SysTems ADL

ATL – Atlas transformation language

SWxml – SystemWeaver XML

MTT – Model Transformation Technology

MDE – Model Driven Engineering

RSQ – Research Question

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 7 (38)

2 SystemWeaver supporting East-ADL

2.1 Introduction to SystemWeaver

In short description SystemWeaver is:

 a generic system modeling platform

 a collaborative environment

 a commercial tool now used by customers on the automotive market

2.2 How to install

Using click once

 Download the application from http://apps.systemite.se/swMAENAD/setup.exe.

 Start the application by clicking the shortcut found in Windows Start menu

Figure 1: Welcome screen

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 8 (38)

How to login?

 Double click the exe file and you will see the screen in Figure 2:

Figure 2: Login page

 Under Login and Password, enter your personal user credentials using (as distributed in

the project), or the read-only account guest / guest.

 If you are sitting behind a proxy, then tick the Use proxy option and fill-in your proxy

location and port1. You can find your proxy location either from your IT-department, or

locate yourself from settings in your Internet browser. If you are using Internet Explorer

you can find the proxy script under Internet Options / Connections / LAN settings / use

automatic configuration script. The script will include the name of alternative proxy

servers. Note that you have to browse to an external address (like google.com) in order to

get the proxy activated prior to using the proxy in SystemWeaver.

1 Note that as an alternative to using the proxy settings in SystemWeaver you could also use an external VPN application approved by your IT

department.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 9 (38)

2.3 EAST-ADL supported by SystemWeaver strong meta-model

The EAST-ADL meta-model is supported by systemweaver. Models can be extended by right

clicking on an element and selecting the preferred part types from the options, guided by the

meta-model.

For example see Figure 3, where “LH Window Lift Control” – is an EAST-ADL AnalysFunctionType.

When right click you are given the option to “add” the elements/prototypes which is pre-defined

by the East-Adl metamodel to be created by AnalysisFuntionType.

Figure 3 : Strong meta-model

2.4 Collaborative Environment for MAENAD

It is possible to create complete EAST-ADL models from your computer using the swExplorer

application. It is also possible to reuse EAST-ADL model fragments created by other users and

make changes without affecting the other user’s data. This means that even if a user creates

another version of the item you use, it does not mean you need to update the item to work with it.

It is possible to work with your old version without getting any conflicts.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 10 (38)

3 Meta model mapping concepts for SystemWeaver

The Meta model concepts of EAST-ADL have been mapped to the set-up of SystemWeaver in a

systematic matter. Ultimately this mapping could be performed automatically once the principles

have been decided. However the first step is always to make an analysis of the alternative

mapping principles in order to select the most appropriate, for each case.

The mapping of the SystemWeaver Meta set up to the EAST-ADL Meta-model should be based

on a number of fundamental needs:

 Bi-directional Exchange between SystemWeaver and other tools based on the XML

format can be done with minimal (preferably no) loss of information.

 Systemite have need for an efficient and effective implementation in SystemWeaver in

terms of effective tool views, versioning, configuration and reuse, integrity of model

elements, collaboration between users etc.

 Take into consideration also the limitations of the project in terms of man hours for the

implementation

The investigation should detect and analyze any conflicts between the above needs, and come

with conclusions on the best mapping strategy, and possibly on feedback to the EAST-ADL meta-

model in case any fundamental deficiencies have been discovered.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 11 (38)

4 Mapping Principles

4.1 Limitations and inherent properties of the SystemWeaver platform

SystemWeaver is a generic modeling platform, although it is not a general meta-modeling

platform. This means that most of the needed constructs for general systems modeling are

included in the platform. However, for each of the generic needs, the platform usually includes

only one effective implementation concept, and that implementation concept may not support the

full syntax or semantics of the formal meta-model of EAST-ADL. However, in most cases there is

a suitable modeling construct in SystemWeaver, and the mapping is simple enough to support

bidirectional exchange with EAXML without loss of information.

The available constructs and limitations of SystemWeaver are described below.

 SystemWeaver only supports single inheritance. In some cases multiple inheritances

could be constructed by the use of inheritance structures. However such structures can

only be true tree structures; “A” could inherit from both “B” and “C” only if “B” inherits from

“C” (or vice versa). An example where simple inheritance is given is in the PortGroup

construct where we choose to make it as a prototype (“part” in SystemWeaver). This

choice has the benefit of that you know which port belongs to which port group.

 Inheritance is further only supported for classifiers (“items” in SystemWeaver), not

prototypes. This means for example that the FunctionPort construct (under

functionModeling) has to be implemented as inheritance for the interfaces rather than the

ports, and also means that a number of generic ports are used instead (in, out, inout).

 Attribute definitions in SystemWeaver incorporates the definition of the attribute and the

type of the attribute. This means that it is not possible to reuse the same type definition for

different attributes. It also means that as the name of the attribute has to be chosen either

the attribute name or the attribute type name.

 SystemWeaver has no inherent support for optional attributes; an attribute is either

mandatory (“Default” in SystemWeaver) or exceptional (“Additional”).

 SystemWeaver has built-in support for instances, including deep instance structures such

as those used in nested components models.

Such instances (Prototypes) are managed as tree nodes and tree node references in

SystemWeaver, rather than being explicitly created as objects by the user. However there

is currently no support for type constraints on node references, as such constraints are

usually implemented in custom type-dependent SystemWeaver tool views. (This also

means that custom views have to be developed, since generic views would be very

difficult to use, since the specific underlying node is not always evident from a Prototype,

since there may be many possible alternative instances for a single Prototype, depending

on the chosen context)

 SystemWeaver has no inherent “Package” concept, meaning that any model element can

be managed without a package.

 SystemWeaver is based on formal identification rather than name binding. This means

that all references in a SystemWeaver model must be correct at all times.

 SystemWeaver has no inherent support for constraints like OCL. Instead SystemWeaver

uses generated reports, and structural concepts that replace the need for a class of

constraints.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 12 (38)

 The multiplicities in SystemWeaver is limited to “0..1” and “*”, since other multiplicity

ranges have not proven useful in past development projects using SystemWeaver. Note

that these multiplicities does not tell which multiplicities that are meaningful in a completed

model, but rather which multiplicity that should be allowed at all times in the

SystemWeaver database, which are two related, but slightly different things.

Other cases should be covered by custom consistency checks, if needed.

Note: SystemWeaver is a system modeling tool rather than a Meta-modeling tool,

meaning that multiplicity ranges that do not translate into real development cases are not

supported. For example how would a multiplicity range of “1” be used in a development

tool? The “1” is clearly a rule that there should be a “link” with that cardinality, but the

question is when, and what should the enforcement mechanisms be. Such constraints are

usually implemented in the same way as other constraints; with generated reports.

4.2 Concept Mapping

The general mapping between EAST-ADL modeling constructs and the selected construct in

SystemWeaver is described below.

EAST-ADL concept SystemWeaver concept Comment

Attribute Attribute In SystemWeaver the attribute

name and the attribute type are

the same. Therefore is the

attribute type and name the

same in the

SystemWeaverExplorer (GUI for

user models). One alternative

solution is to prefix the attribute

name to the attribute type:

<name>:<type>

Attribute type Attribute type Since SystemWeaver does not

distinguish between attribute

names and attribute types,

different attributes cannot share

the same type definition (apart

from sharing the same basic

type) but separate types must

be defined for such cases.

Optional attributes - Attributes with a multiplicity of

0..1 are not supported in

Systemweaver, only mandatory

attributes, with a multiplicity of 1

EAElement Item In SystemWeaver items have

names as a property. Not an

attribute as in EA.

«atpType» Item, DefObj of a Part The semantics of atpTypes are

supported by SystemWeaver

Item Types

«atpPrototype» Part types, suffixed with a The semantics of atpPrototypes

are supported by

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 13 (38)

EAST-ADL concept SystemWeaver concept Comment

“«atpPrototype»” SystemWeaver Part types

«atpPrototype» + ports Parts + ports. A Part owns ports. Parts inherit

its ports from its defining type

(Item).

«atpStructureElement» Items and parts in

combination with its node

tree. For Items see

«atpType» and for parts

«atpPrototype»

atpStructureElement which

combines «atpType» +

«atpPrototype» and have the

property of “unique existential

quantification” or

“disambiguation” is in

SystemWeaver solved with the

node tree. Where Items and

parts uses the node

tree/instance tree.

Short description for Nodes:

In SystemWeaver there is an

instance tree that is created

automatically for each

atpStuctureElement and all

included prototypes. In the tree

there is a unique instance node

created and linked to each such

element. Whenever there is a

need for a reference to an

element in the structure the

reference is made to the

corresponding node.

Also keep in mind that the Item

solution means that reusability is

mandatory, even when not

wanted. No significant

drawbacks can be seen for this

exception.

Note that In a fine-grained

versioning system like

SystemWeaver even an

atpStructureElement will be

reused by different versions.

«instanceRef»

(“Dependencies”)

Nodes Supported by SystemWeaver,

with nodes and node

references. SystemWeaver

does not support type

constraints on node references

«isOfType» Meta model: DefType

Model: DefObj

IsOfType is implemented as a

standard DefType construct. “

Allocation See comment Maps to a node to node relation

in SystemWeaver.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 14 (38)

EAST-ADL concept SystemWeaver concept Comment

Multiple inheritance Not supported (for classical

reasons)

In EAST-ADL multiple

inheritance is used in a few

cases, like the

AllocateableElement/InstanceRe

f case (see above), where

special solutions are used

anyway.

The solution is to use only the

most fundamental of the two (or

many) inheritances. The

inheritance that gives the most

important properties.

4.3 Element Mapping and Implementation status

The Impl Meta columns describes if there is an explicit implementation in the meta model of the

SystemWeaver set up. Note that sometimes there is support for a construct without any explicit

implementation. In such case there is a note attached that describes details on this.

The Impl view means that there is some kind of dedicated or effective view support. However

normally the standard views are effective. n/a for this column means that there is no identified

need for a dedicated view.

The Impl XML view describes support for export and import.

n/a Not Applicable, the specific construct is not supported in the implementation platform

not No transformation support, there is a need but due to time the transformation could not be

implemented

X Implemented

4.3.1 SystemModeling

EAST-ADL element SystemWeaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

AnalysisLevel «atpStructureElement» Item X X X Import and Export
Supported

DesignLevel «atpStructureElement» Item X X X Import and Export
Supported

ImplementationLevel
«atpStructureElement»

Item * * * *There is an optional
support for AUTOSAR
4.0 available, including
views and support for
import and export of
ARXML, however not
installed in final setup.

SystemModel «atpStructureElement» Item X n/a X Import and Export
Supported

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 15 (38)

VehicleLevel «atpStructureElement» Item X n/a X Import and Export
Supported

4.3.2 FeatureModeling

EAST-ADL element SystemWeaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

BindingTime Item X X X Import and Export
Supported

BindingTimeKind «enumeration» Attribute (type) X X X Export to EAXML
supported

Feature «atpStructureElement» Item X X X Import and export
supported

FeatureConstraint Item X X X

FeatureGroup Item X X X Import and
export supported

 Multiplicity of
child feature set
to *

FeatureLink Item X X X Import and export
supported

FeatureModel
«atpStructureElement»

Item X X X Import and Export
supported

FeatureTreeNode {abstract} Item X n/a X

VariabilityDependencyKind
«enumeration»

attribute X n/a X See section 4.2 attributes
for more details.

Export to EAXML
available

4.3.3 VehicleFeatureModeling

EAST-ADL element SystemWeaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

DeviationAttributeSet Item X n/a n/a No transformation support

DeviationPermissionKind
«enumeration»

Attribute X n/a X Export to EAXML is available

See section 4.2 attributes for
more details.

VehicleFeature Item X X X Import and export supported

Attribute:
isDesignVaribilityRationale is
added.

4.3.4 FunctionModeling

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 16 (38)

EAST-ADL element SystemWeaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

shortName Attribute X n/a X Export and import
supported

Used reg exp. [a-zA-Z][a-zA-Z0-
9_]{0,31} instead of ([a-zA-Z][a-
zA-Z0-9_]{0,31})+ for name
validation. ()+ seems strange,
and complexity of evaluation
grows exponentially with the
length of the name.

AllocateableElement
{abstract}

 n/a n/a not In SystemWeaver only supports
instance references directly from
the item owning the
instance/node tree, meaning that
the allocation concept is not
allowed in SystemWeaver.
SystemWeaver also does not
support multiple inheritances.
AllocateableElements is therefore
not implemented.

Allocation Item X X X Export to EAXML supported

AnalysisFunctionPrototyp
e

Part X X X Import and Export
Supported

In SystemWeaver this is a part
and a part does not support
inheritance. Due to this reason
the AnalysisFunctionPrototype is
not inherited from the
FunctionPrototype (Which is a
part)

AnalysisFunctionType Item X X X Import and Export supported

BasicSoftwareFunctionTy
pe

Item X X X Import and Export supported

ClientServerKind
«enumeration»

Attribute X X X Import and Export is supported

* See section 4.2 attributes for
more details.

DesignFunctionPrototype Part X X X Import and Export supported

DesignFunctionType Item X X X Import and Export supported

EADirectionKind
«enumeration»

Attribute X X X Import and Export
available

Native tool view in
SystemWeaver use parts
(prototypes) corresponding to the
in/out/inout values, rather than
attribute types. However, a way
to solve this is to use the inout
part type only for all EAST-ADL
ports types, and then use the
DirectionKind to decorate the
model with a direction.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 17 (38)

EAST-ADL element SystemWeaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

FunctionalDevice Item X X X Import and Export supported

FunctionAllocation Item X X X Export to EAXML supported

FunctionClientServerInter
face «atpType»

Item X n/a X Import and Export supported

FunctionClientServerPort Item X X X Import and Export supported

FunctionConnector
«atpStructureElement»

Part Type (EAFN
and EAFO)

X X X Import and Export
supported

 Part types used rather
than item types for best
use of the
SystemWeaver Platform.
Separate part types are
used for the assembly
and the delegation type,
due to different instance
tree reference
mechanisms (node and
part respectively)

FunctionFlowPort X X X Import and Export supported

FunctionPort {abstract}
«atpPrototype»

Item {abstract} X X X Import and Export supported

FunctionPowerPort X X X Import and Export supported

FunctionPrototype
{abstract} «atpPrototype»

 * X X *Not Supported or needed
explicitly. See
DesignFunctionPrototype and
AnalysisFunctionProtoype for
details.

FunctionType {abstract}
«atpType»

Item {abstract} X X X Import and Export supported

HardwareFunctionType Item X X X Import and Export supported

LocalDeviceManager Item X X X Import and Export supported

Operation Item X not not No transformation support

PortGroup Part X not not *Since this is implemented using
the Part construct in
SystemWeaver, subPortGroups
cannot be used. The advantage
of this is to avoid ambiguity of
ports (functionPorts). This means
that it can be identified which port
belongs to which portGroup and
functionType. See ticket 50.

Maybe portGroup also is in the
wrong abstraction level. Should
be closer to implementation level.
Because the possibility of
knowing group of ports is high on
the less abstraction level than in
the hardwareModeling.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 18 (38)

EAST-ADL element SystemWeaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

Actuator Item X X X Import and Export supported

AllocationTarget Part X * * *No meaning to implement, see
multiple inheritance for
SystemWeavereaver.

In SystemWeaver
HardwareComponentPrototype is
a part and parts cannot be
inherited, due to this reason it is
not feasible to implement the
AllocationTarget.

Cardinality Attribute X X X Export to EAXML is supported

4.3.5 HardwareModeling

EAST-ADL element System

Weaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

Actuator Item X X X Import and Export supported

AllocationTarget {abstract}

Item X X X Export to EAXML is
available

 This is supported in
systemweaver way due to
the allocation support.

CommunicationHardwarePin Item X X X Import and Export supported

HardwareComponentPrototype
«atpPrototype»

Part X X X Import and Export supported

HardwareComponentType
«atpType»

Item X X X Import and Export supported

HardwareConnector
«atpStructureElement»

Item X X X Import and Export supported

HardwarePin
«atpStructureElement»

Item X X X Import and Export supported

HardwarePinDirectionKind
«enumeration»

Attribute X X X Import and Export supported

HardwarePinGroup Item X X not No transformation support

IOHardwarePin Item X X X Import and Export supported

IOHardwarePinKind
«enumeration»

Attribute X X X See section 4.2 attributes for more
details.

Node ltem X X X Import and Export supported

PowerHardwarePin Item X X X Import and Export supported

ElectricalComponent Item X X X Import and Export supported

Sensor Item X X X Import and Export supported

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 19 (38)

4.3.6 Environment

EAST-ADL element System

Weaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

ClampConnector
«atpStructureElement»

Part X not not No transformation support

Environment Item X not not No transformation support

4.3.7 Behavior

EAST-ADL element System

Weaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

Behavior Item X not not No transformation support

FunctionBehavior Item X not not No transformation support

FunctionBehaviorKind
«enumeration»

Attribute X not not No transformation support

See section 4.2 attributes for more
details.

FunctionTrigger Item X not not No transformation support

Mode Item X not not No transformation support

ModeGroup Item X not not No transformation support

TriggerPolicyKind Attribute X n/a not See section 4.2 attributes for more
details.

4.3.8 Variability

EAST-ADL element System

Weaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

ConfigurableContainer Item X n/a not No transformation support

ConfigurationDecision Item X n/a not No transformation support

ConfigurationDecisionFolder Item X n/a not No transformation support

ConfigurationDecisionModel
{abstract}

Item
{abstract}

X n/a not No transformation support

ConfigurationDecisionModelEnt
ry {abstract}

Item
{abstract}

X n/a not No transformation support

ContainerConfiguration Item X n/a not No transformation support

FeatureConfiguration Item X n/a not No transformation support

InternalBinding Item X n/a not No transformation support

PrivateContent Item X n/a not No transformation support

ReuseMetaInformation Item X n/a not No transformation support

SelectionCriterion Item X n/a not No transformation support

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 20 (38)

Variability Item X n/a not No transformation support

VariableElement Part X n/a not No transformation support

VariationGroup Item X n/a not No transformation support

VehicleLevelConfigurationDecis
ionModel

Item X n/a not No transformation support

4.3.9 Requirements

EAST-ADL element System

Weaver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

DeriveRequirement Item X n/a X Export to EAXML is supported

OperationalSituation Item X n/a X Export to EAXML is supported

QualityRequirement Item X n/a X Export to EAXML is supported

QualityRequirementKind Attribute X n/a X Export to EAXML is supported

See section 4.2 attributes for more
details.

Refine Item X n/a X Export to EAXML is supported

Requirement Item X n/a X Export to EAXML is supported

RequirementsContainer Item X n/a X Export to EAXML is supported

RequirementsLink Item X n/a X Export to EAXML is supported

RequirementsModel Item X n/a X Export to EAXML is supported

RequirementSpecificationObjec
t {abstract}

Item
{abstract}

X n/a not No transformation support

RequirementsRelatedInformatio
n

Item X n/a not No transformation support

RequirementsRelationGroup Item X n/a not No transformation support

RequirementsRelationship
{abstract}

Item
{abstract}

X n/a not No transformation support

Satisfy Item X n/a X Export to EAXML is supported

4.3.10 Dependability

EAST-ADL element SystemWea

ver concept

mpl

Meta

Impl

view

Impl

XML

Comment

ControllabilityClassKind Attribute X n/a X Export to EAXML is supported

Dependability Item X n/a X Export to EAXML is supported

DevelopmentCategoryKind Attribute X n/a X Export to EAXML is supported

ExposureClassKind Attribute X n/a X Export to EAXML is supported

FeatureFlaw Item X X X Export to EAXML is supported

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 21 (38)

Hazard Item X n/a X Export to EAXML is supported

HazardousEvent Item X n/a X Export to EAXML is supported

Item Item X n/a X Export to EAXML is supported

SeverityClassKind Attribute X n/a X Export to EAXML is supported

4.3.11 ErrorModel

EAST-ADL element SystemWeav

er concept

Impl

Meta

Impl

view

Impl

XML

Comment

Anomaly Item X X X Export to EAXML is
supported

ErrorBehavior Item X n/a X Export to EAXML is
supported

ErrorBehaviorKind Attribute X n/a X

ErrorModelPrototype Part X X X Export to EAXML is
supported

ErrorModelType Item X X X Export to EAXML is
supported

FailureOutPort part X X X Export to EAXML is
supported

FaultFailurePort part X X X Export to EAXML is
supported

FaultFailurePropagationLink Node X X

FaultInPort part X X X Export to EAXML is
supported

InternalFaultPrototype part X X X Export to EAXML is
supported

ProcessFaultPrototype part X X X Export to EAXML is
supported

4.3.12 UseCases

EAST-ADL element SystemWe

aver

concept

Impl

Meta

Impl

view

Impl

XML

Comment

Actor Item X n/a X Export to EAXML is supported

Extend Item X n/a X Export to EAXML is supported

QuantitativeSafetyConstraint Part X n/a X Export to EAXML is supported

shortName Attribute X n/a X Export to EAXML is supported

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 22 (38)

5 View Examples

5.1 Overview

The view examples are prepared as screen shots, using the swExplorer client version

1.45.0.8918 and EAST-ADL specific Extension views SWExtension.GraphsForMAENAD.dll

version 1.0.5000.17884 and SWExtension.GraphsForFeatureModels.dll version 1.0.5044.28907

The views are further from examples prepared in the server set up for the MEANAD project at

address maenad.systemite.net, port number 443, either imported from examples prepared by

other tools of the MAENAD project, or created manually.

Additional view examples can be found in reference [3].

5.2 Generic views

The figure below illustrates the use of standard generic views for browsing and editing of EAST-

ADL models, using a tree view for browsing and building model structures. Depending on the type

of the selected model element optional detailed views become available, either as seen in the

“ribbon” part of the tool or the drop-down menu, where the Overview view is selected below.

(There are around 100 generic views in SystemWeaver, many of which support aspects like

versioning, access control etc.)

Generic views in SystemWeaver are those views that need not be configured specifically for a

specific meta model.

Note: As can be seen in the figure the ‘name’ attribute is left empty for the selected FeatureModel

(of the BBW_4Wheel example), since the standard SystemWeaver Item name concept is used

for the same purpose. (The ‘name’ attribute was retained in the meta model for sake of

completeness).

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 23 (38)

Figure 4: Generic view

5.3 Configurable standard views

The example below shows the AnalysisLevel AnalysisFunctionType FAA_T of the (imported)

BBW_SystemModel example.

The graphical view used for the AnalysisFunctionType is a standard, configurable, view in

SystemWeaver, in this case configured specifically to display the EAST-ADL

AnalysisFunctionType elements.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 24 (38)

Figure 5: Configurable graphical view

The figure below shows a special configurable view, in that the view was implemented to support

the allocation model used in EAST-ADL, although the view was made configurable so that it could

be used for most mapping and allocation purposes in EAST-ADL using the instanceRef construct.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 25 (38)

Figure 6: Configurable allocation/traceability view

The view supports traceability in three different ways, by displaying the established traceability

from as seen above from the selected AnalysisFunctionPrototype where the traceability is

created, secondly by displaying the same traceability from the DesignFunctionPrototype, and

thirdly by displaying the overall traceability from a context perspective (see figures below).

Note that each of these views can scale to large size models.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 26 (38)

Figure 7: Traceability from Design level

Figure 8: Traceability from SystemModel (context) perspective

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 27 (38)

5.4 Custom views: Graphical Feature View

The example below shows the feature tree of the BBW_4Wheel example.

The feature view can be activated by selecting the Graphs for Feature Models view whenever a

FeatureModel is selected in the tree.

This view has been implemented as a custom SystemWeaver Extension view, distributed as a

separate DLL file, but integrated into the GUI of the swExplorer application.

Figure 9: Graphical feature view

This view uses an automatic layout and rendering algorithm, meaning that no manual drawing is

required, e.g. after an import of the model into the SystemWeaver database.

A related custom view type is the support for automatic calculation of attribute values, as seen in

the figure below, where an ASIL value is calculated out of other attributes.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 28 (38)

Figure 10: Calculated ASIL value

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 29 (38)

6 Model Transformation

ATL is used to implement the transformation between SystemWeaver and EAXML models.

ATL is a popular M2M transformation technology. According to [4], ATL model transformation

adopts partially declarative transformation approach which merges both declarative and

imperative transformations. The hybrid feature enables us to deal with conditions of domain

specific scenarios, simpler formal syntax and mathematical foundations. The fact that this tool

has declarative behavior helps to have error free code due to the no side effect feature [5].

ATL complements declarative behavior over imperative and vice versa in case of impossibilities.

On situations such as impossibility of transformation using declarative language, ATL allows

users to use imperative language in order to enable complex transformations. ATL is one among

the different model transformation tools which has the capability to automatically create target

model using the information represented in source model, source meta-model and target meta-

model.

The ATL model, which is basically the main transformer, uses source meta-model, target meta-

model and source model as inputs during transformation. The ATL model consists of import, rules

and helpers. The helpers mostly describe global variables derived from the input meta-model.

These helpers are used later in the rules to implement the real transformation. ATL model

supports unidirectional model transformation. However, it is possible to implement bidirectional

transformation through explicit implementation of both side transformations.

Detailed analysis of both the source and the target meta-models is very important prior to the

transformation. These derived rules to transform SystemWeaver to EAXML and vice versa are

derived from the Analysis result and are discussed in detail in the forthcoming topics.

Methodology used to implement transformation:

Figure 11: Methodology

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 30 (38)

Generally more than one transformation is used to handle the EAXML and SWxml models. ATL

can read and write .ecore or .xml models.

To hide the configuration complexity of ATL, a graphical user interface has been implemented.

The transformation supports both for EAST-ADL M2.1.9 and M2.1.10.

Figure 12 : Systemite bidirectional model transformation application

6.1 Transformation Architecture

The ATL transformation is a model based model to model transformation. The bidirectional

transformation between SystemWeaver model and EAXML is realized through two ways of single

transformation. The transformation model always checks at the input and output meta-models to

check the semantic correctness of the input model and to create the output meta-model based

model. The figure below shows how the ATL model checks on the meta-models during

transformation.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 31 (38)

 Figure 13: Over all transformation architecture

6.2 Meta-model mapping

According to the investigation made between SystemWeaver and EAXML meta-models, it is

discovered that the EAXML meta-model is implicit. This means there are no inheritances applied.

However, the SystemWeaver meta-model is an implicit meta-model where represents elements

as Item and relationships as part or node. The figure below shows how the meta-model

implementations are different from one another. Both meta-models are represented using

ECORE format.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 32 (38)

 Figure 14: Meta-model comparison

This makes the transformation time taking to implement. The fact that EAXML explicitly describes

its elements, leads to equivalent rules in the ATL transformation. Due to this reason a total of 997

ATL rules and 135 ATL helpers are implemented to support the covered part of the meta-model.

6.3 EAXML2SystemWeaver Transformation

The transformation from EAXML to SystemWeaver can be represented in the figure shown

below.

Figure 15: EAXML2SW Transformation Logic

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 33 (38)

The EAXML.xml is transformed to EAXML.ecore using an auxiliary transformation then the

EAXML.ecore is transformed to SystemWeaver model, which results to an ecore model. Since

ecore models cannot be imported to SystemWeaver, the auxiliary transformation is required.

Generally, in total of three transformations are required to get the transformed model in the

desired format which is xml. Mapping for the main transformation is shown on the table.

6.4 SystemWeaver2EAXML Transformation

Name Mapped To

TOP-LEVEL-PACKAGES Items

SUB-PACKAGES Item

EA-PACKAGES Item

ELEMENTS Item

HARDWARE-COMPONENT-TYPE Item

NODE Item

SENSOR Item

POWER-SUPPLY Item

ACTUATOR Item

BUSS Item

HARDWARE-CONNECTOR Item

instanceRef Node

UUID Id

SHORT-NAME name

isOfType Type which is an Item

HARDWARE-COMPONENT-PROTOTYPE part

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 34 (38)

The figure shown below is a demonstration for the transformation between SystemWeaver and

EAXML.

Figure 16: SW2EAXML Transformation Logic

The above transformation is divided into Auxiliary and main transformations. The main

transformation is the transformation where different analysis is required. As the references and

the size of the meta-model are big, the rules and mappings are more in number and in complexity

than it is shown at the table.

Mapping for the main transformation of the export is shown below.

6.5 Transformation Coverage of the EAST-ADL meta-model

Name Mapped to

Items TOP-LEVEL-PACKAGES

Item Elements, EA-PACKAGES, SUB-PACKAGES ,

Dependability etc

Part HARDWARE-COMPONENT-PROTOTYPE,

prototypes, ports etc

Id UUID

Name Name

shortName SHORT-NAME

Node instanceRef

Type isOfType

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 35 (38)

As it is shown in the mapping principles section, the transformation has covered a big part of the

EAST-ADL Specification. The import covers Infrastructure, System Model along with the three

abstraction levels, Analysis level, Vehicle Level and Design level. The export covers

Requirements, Dependability in addition to the imported elements. The picture below describes

the parts the transformation supports to.

 Figure 17: Transformation coverage of EAST-ADL Specification

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 36 (38)

7 Current status and Future plan

7.1 Current Status

According to the requirements listed on WP2, the following are achieved in this year

1. Meta-model implementation

The different versions of EAST-ADL are implemented using SystemWeaver. The current

version, M2.1.10, M2.1.11 and M2.1.12 are implemented.

2. Tutorial

The final version of the tutorial for EAST-ADL implementation using SystemWeaver is

uploaded and it can be found at SystemWeaver folder situated at WT5.3/SystemWeaver.

3. Transformation

The model to model transformation between SystemWeaver and EAXML is implemented.

4. GUI for the transformation

The GUI along with its manual, on how to use the transformation is ready. Application along

with its instruction is provided at \WP5\WT5.3\SystemWeaver\SWTransformation V2.

5. Instance ref is handled in Systemweaver. Example: Errormodel on the context of

dependability is implemented.

6. FDA to FAA realization and HAD to FDA allocation are implemented in Systemweaver

7. A new better graphical view for the HDA is implemented

8. A tutorial to instruct on how to develop error model and use the allocations in Systemweaver

is included.

7.2 Future plan

1. Updating the XML exchange to M2.1.12 will be done in the Swedish research project

Synligare.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 37 (38)

8 Conclusions & Summary

The full M2.1.12 EAST-ADL implementation is now available in SystemWeaver. A meta-model

based implementation, which provides strong typing mechanism, is applied to implement the

EAST-ADL in System Weaver. The strong typing prevents users from making mistake while

designing EAST-ADL models.

SystemWeaver is a collaborative environment where changes can be reverted or easily

abandoned. It is possible for different users to work with different versions of the same element.

This easily shows that it is possible to make an impact analysis by looking at the different

versions and see what their differences with the help of SWExplorer tool. This makes it one of the

best tools. Reusability is a core concept in SystemWeaver.

A bi-directional model transformation is available between SystemWeaver and EAXML models.

ATL is used to realize the transformation. This transformation is meta-model based

transformation and its output can be of different format models such as xml, xmi and ecore file

formats. This can lead to a conclusion that SystemWeaver can now integrate with tools that can

import EAXML.xml, EAXML.xmi and EAXML.ecore.

For more detailed information about mapping and other subjects see section “mapping

principles” and “Meta model mapping concepts for SystemWeaver”.

MAENAD D5.3.1 Grant Agreement 260057

 2013 The MAENAD Consortium 38 (38)

9 Reference

1. http://www.systemite.se

2. Nigsti Ayele, Investigating Model Transformation Technologies for Architecture Description
Languages. Online available at <http://publications.lib.chalmers.se/records/fulltext/149219.pdf>
accessed on 2012-08-21

3. SystemWeaver tutorial for EAST-ADL

4. Tolosa et al, Towards Meta-model Interoperability of Models through Intelligent
Transformations S.Omatu et al (EDs.) : IWANN 2009, Part II, LNCS 5518, p. 312-322, SpringerLink
– Verglag Berlin Heidelberg 2009

5. Malavolta et al. Providing Architectural Languages and Tools Interoperability through Model
Transformation Technologies IEEE TRANSACTIONS ON SOFTWARE ENGINEEERING, VOL 36,
NO. 1, JANUARY/FEBRUARY 2010

