

Grant Agreement 260057

Model-based Analysis & Engineering of Novel Architectures
for

Dependable Electric Vehicles

Report type Deliverable D5.3.1

Report name EAST-ADL implementation in
MetaEdit+

Dissemination level PU

Status Final

Version number 4.0

Date of preparation 2014-02-17

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 2 (16)

Authors

Editor E-mail

Janne Luoma janne@metacase.com

Authors E-mail

Janne Luoma

Juha-Pekka Tolvanen

janne@metacase.com

jpt@metacase.com

Reviewers E-mail

Sara Tucci sara.tucci@cea.fr

Henrik Lönn henrik.lonn@volvo.com

The Consortium

Volvo Technology Corporation (S) Centro Ricerche Fiat (I)

Continental Automotive (D) Delphi/Mecel (S) 4S Group (I)

ArcCore AB (S) MetaCase (Fi) Systemite (SE) CEA LIST (F)

Kungliga Tekniska Högskolan (S) Technische Universität Berlin (D) University of Hull (GB)

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 3 (16)

Revision chart and history log

Version Date Reason

0.1 28.12.2010 Initial version

0.2 2.2.2011 Updated metamodel, references

0.3 26.4.2011 Revision, minor updates

0.4 12.5.2011 Minor updates based on feedback from VTEC

0.5 10.8.2011 Updated for EAST-ADL2 M.2.1.9 METAEDIT20110622

1.0 30.8.2011 Finalized for deliverable

2.0 29.8.2012 Updated version

3.0 28.2.2013 Updated version with latest metamodel

4.0 prel 15.1.2014 Updated for EAST-ADL M2.1.12, added Section 4

4.0 17.2.2014 Updated based on reviews

Approval Date

Henrik Lönn 2014-02-20

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 4 (16)

Table of contents

Authors... 2

Revision chart and history log ... 3

Table of contents ... 4

1 Introduction .. 5

1.1 Downloading and installing MetaEdit+ for EAST-ADL... 5

2 Modeling Hardware Architecture with EAST-ADL ... 6

3 Hardware Analysis Description: metamodel .. 7

3.1 Language concepts ... 7

3.2 Notation .. 8

3.3 Constraints and rules ... 9

3.4 Notation of the Hardware Architecture .. 11

3.5 Generators ... 12

4 Modeling support for other parts of EAST-ADL ... 13

4.1 Modeling support ... 13

4.2 Generators, analysis support and interfaces ... 14

5 Conclusions ... 15

6 References... 16

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 5 (16)

1 Introduction

MetaEdit+ is a mature, platform-independent language workbench for domain-specific modelling,
supporting graphical, matrix and table-based modelling languages. In MAENAD project MetaEdit+
has been used to implement the metamodel of EAST-ADL, along with constraints, notation and
various generators.

MetaEdit+ for EAST-ADL provides graphical editors, matrix editors, table editors, various browsers
and related generators for EAST-ADL. MetaEdit+ scales to cases with hundreds of users and
gigabytes of models. Repository of MetaEdit+ is used to store both EAST-ADL metamodels and
models, including both conceptual and representational (abstract and concrete syntax) data for
both. A repository can consist of an unlimited number of projects, each of which can hold over 4
billion persistent objects.

This document describes the implementation using Hardware Architecture of EAST-ADL (version
M2.1.12 [1]) as an example. First we show the sample of the language in use (Section 2) and then
(Section 3) describe its implementation details, covering:

 Metamodel and related rules

 Consistency checks and checking reports

 Notation

 Generators

Finally Section 4 outlines other modeling capabilities and generators available and developed by
MAENAD partners.

For starting to use EAST-ADL, there is a separate tutorial describing the use of EAST-ADL in
MetaEdit+ [2]. This guide covers also other parts of EAST-ADL than modeling Hardware
Architecture, such as functional architectures, requirements models, feature models, dependability,
environment models etc. There are also generators for tracing, checking, and various exports like
Simulink, HIPHOPS, ReqIF etc.

In addition to EAST-ADL manuals there are also User Guides on using MetaEdit+ tool itself [3].
This User Guide’s describe how to create and modify the metamodel of EAST-ADL, its notations
and generators.

1.1 Downloading and installing MetaEdit+ for EAST-ADL

For exploring EAST-ADL tutorial thoroughly, you need MetaEdit+ tool and EAST-ADL repository.
See EAST-ADL tutorial at http://www.metacase.com/papers/MetaEditPlus_Tutorial_for_EAST-
ADL.pdf for instructions.

After installing MetaEdit+ tool you should extract the EAST-ADL repository file into the same folder
you have installed MetaEdit+. As default MetaEdit+ working directory should contain ‘demo’
repository coming with the standard MetaEdit+ installation. In Windows this working directory is
under your ‘…\YOUR USERNAME\My Documents\MetaEdit+ 5.0’. After extracting the zipped
repository you should have two separate folders like: ‘demo’ and ‘EAST-ADL’ repositories on the
same level (both of these repositories should have subfolders named as ‘areas’, ‘backup’ and
‘users’ and two files ‘manager.ab’ and ‘trid’). Make sure you have read and write rights to the
directory. In case that you already have existing EAST-ADL repository (downloaded earlier), see
Section 7 in [2] for details.

http://www.metacase.com/papers/MetaEditPlus_Tutorial_for_EAST-ADL.pdf
http://www.metacase.com/papers/MetaEditPlus_Tutorial_for_EAST-ADL.pdf

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 6 (16)

2 Modeling Hardware Architecture with EAST-ADL

MetaEdit+ provides tool support for EAST-ADL language with graphical editors, matrix editors,
table editors, various browsers and related generators. Figure 1 shows a sample of hardware
architecture diagram of EAST-ADL in MetaEdit+.

The modeling editor provides basic editing features (move, zoom, grid etc) and editing functionality
related to modeling languages such as copy-&-paste, paste special, refactoring, trace, unlimited
redo/undo, auto layout etc.

Figure 1: Example of Hardware Architecture Model in MetaEdit+.

MetaEdit+ provides also other tools for modeling work including:

 Editing models (Matrix Editor, Table Editor)

 Browsing models (Graph, Type, Object Browsers)

 Generators for configuration, code, documentation, metrics, etc.

 Multi-user support supporting simultaneous users (even within the same diagram)

 Multi-platform support

 API, import and export tools

Functionality of these tools is described in detail in [3].

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 7 (16)

3 Hardware Analysis Description: metamodel

This section describes the implementation of hardware architecture language of EAST-ADL.

3.1 Language concepts

EAST-ADL language is specified as a metamodel, covering the language concepts (objects,
relationships, roles, ports and properties) as well as their connections. Figure 2 shows the main
objects of the metamodel in Hardware Modeling as been implemented in MetaEdit+.

Figure 2: Main modeling objects in Hardware Architecture

For each concept of the metamodel, such as for selected ‘PowerHardwarePinIn’ there is a
separate definition describing its properties, constraints and notation. Figure 3 shows the definition
of the ‘PowerHardwarePinIn’ such as that Pins have four properties and that ‘IsGround’ is specified
as Boolean property whereas ‘Name’ as identifier is specified as a string.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 8 (16)

Figure 3: Definition of PowerHardwarePinIn

3.2 Notation

Every language, like EAST-ADL [1] includes also notational definitions and they are specified for
each concept of the language. Below a notational symbol is specified for the PowerHardwarePinIn.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 9 (16)

Figure 4: Symbol definition for PowerHardwarePinIn

3.3 Constraints and rules

EAST-ADL specification [1] includes also a large number of rules and constraints that specify
which kind of models are complete, consistent and correct. In [1] most of these rules and
constraints are written in plain English. These rules are coded and formalized so that they are
followed during modeling, generators and interchange.

Examples of such rules include uniqueness, such as pins must have a unique name within a type
specification, and connections between power are possible only between of different direction but
same voltages. Thus for example connections between IO and power are not possible among the
prototypes. These rules are also defined into the metamodel using the constraints or by
implementing model checks using generators as discussed below.

In addition to rules that are part of the metamodel definition itself, the EAST-ADL implementation in
MetaEdit+ includes generators that check the correctness and completeness of the models. These
checks are implemented as generators and they are available to be executed when checking is
needed or by annotating the checking results directly in the model or in the LiveCheck pane
integrated to the Diagram Editor tool.

Checking reports include:

 Warning if prototypes are left undefined (untyped)

 Warning on using same values for multiple objects (e.g. same name for several
connections)

 Warning on empty or illegal identifying elements (e.g. kind of quality requirement)

 Informing on serially connected sensors / actuators

 Informing on non-defined wire definitions applied in HardwarePortConnector

 Incompatible pin types in IOHardware based connections (e.g. analog to digital)

 Informing on duplicated wire definitions in HardwarePortConnector

 Unconnected pins

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 10 (16)

The results of the checking are shown in a separate window or directly in the hardware architecture
diagram by annotating the model elements. When the result of the checking is shown textually in
the output window a link is provided from each warning to the respective model element, like
shown in Figure 5. This enables tracing from model elements with errors to the actual model
element.

Figure 5. Error annotation and checking

Generators are also used to visualize allocations of functional prototypes to the hardware
architecture. After allocation matrix is created the hardware architecture can visualize allocations
(show allocated prototypes is set on in graphs properties). The figure below shows such
visualization: the white small rectangles inside the hardware element are the allocated functions.
This example is exported using export to PNG function.

Figure 6. Visualizing allocated functions within hardware architecture description

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 11 (16)

3.4 Notation of the Hardware Architecture

To enable creating, editing and reading the models the language is supported by a graphical
notation as follows:

Language concepts Representation of the concept

The Actuator is the element that represents
electrical actuators, such as valves, motors, lamps,
brake units, etc.

ElectricalComponent denotes a power source that
may be active (e.g., a battery) or passive (main
relay).

The Node element represents an ECU, i.e. an
Electronic Control Unit, and an allocation target of
FunctionPrototypes.

Sensor represents a hardware entity for digital or
analog sensor elements.

Hardware connectors represent wires that
electrically connect the hardware components
through its ports.

HardwarePortConnector represents a logical
connection that carries data from any sender to all
receivers.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 12 (16)

IOHardwarePin represents an electrical connection
point for digital or analog I/O. Blue triangle shows
the direction of the flow. Relationships between
these pins are shown with solid blue line.

The CommunicationHardwarePin represents the
hardware connection point of a communication bus.
Grey triangles show the direction of the flow.
Relationships between these pins are shown with
solid black line.

PowerHardwarePin represents a pin that is
primarily intended for electrical component, either
providing or consuming energy. Green triangles
present the direction of the energy. Relationships
between these pins are shown with thick green
color.

Comment object allows you to add visual
description to the model and connect it with any
other object in the model.

3.5 Generators

Generators are used to produce various outputs, such as documentation, checking and metrics.
Some of the generators are specific to hardware architecture of EAST-ADL. These include:

 Finding out all prototypes using the current hardware architecture type

 Tracing all realization relationships from hardware to requirements

 Tracing all satisfy relationships from hardware to requirements

 Unconnected pins reports pins available but not used

A number of other generators are also accessing hardware architectures, like producing
AUTOSAR based on allocations done between functional elements and hardware elements, or
producing EAXML for tool interchange.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 13 (16)

4 Modeling support for other parts of EAST-ADL

In addition to specifying hardware architectures, EAST-ADL can be used to cover several other
aspects of automotive architecture, such as functions, behavior, safety etc. These models can be
then used for various analysis and code/configuration generation needs.

4.1 Modeling support

MetaEdit+ provides editors for other parts of EAST-ADL. Figure 7 below shows one of the main
browsers of MetaEdit+ describing different parts of EAST-ADL been covered.

Figure 7. Modeling support in MetaEdit+ for EAST-ADL.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 14 (16)

4.2 Generators, analysis support and interfaces

The various models created with MetaEdit+ can be used for different needs. Depending on the
model different generators are been developed including:

 EAXML: generators from Package produces EAST-ADL models into EAXML format

 ReqIF: Requirements can be transformed into ReqIF format for exchange with
requirements management tools

 Excel: Requirements can be managed in Excel or similar tool and then imported for EAST-
ADL for further refinement (like satisfy links to functions etc).

 Simulink: Functional Design can be transformed into Simulink models and API calls

 HIPHOPS: Behavioral descriptions can be translated to HIPHOPS for safety analysis

 Error models for initial dependability analysis can be created from nominal functional
architectures

 SPIN: BehaviorConstraints can be translated to SPIN

 UPPAAL: Behavioral descriptions can be translated to UPPAAL

 AUTOSAR: based on allocations between hardware and functions mappings to AUTOSAR
architecture (software components, their ports and runnables) can be created

 Test cases and data can be produces from models

 Word: documentation can be generated to RTF and Word

 HTML: documentation can be generated into HTML files

All these generators are open for modifications using MetaEdit+. Users may then extend and
modify any of the generators fitting to their specific needs.

In addition to generators also interfaces are available to programming environments like Visual
Studio and Eclipse.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 15 (16)

5 Conclusions

This document described MetaEdit+ support for EAST-ADL using Hardware Architecture modeling
as an example. The tool support covers EAST-ADL concepts, constraints rules, notation, checks
and generators. These definitions can be inspected and modified with MetaEdit+ Workbench. Any
change to the language definition will update the models made and previous work will not be lost
due to language evolution.

In addition to modeling editors, MetaEdit+ provides various browsers, generators, traceability,
multi-user support, native UI support for various operating systems etc. To learn more about
MetaEdit+ you are encouraged to study MetaEdit+ User’s Guide that comes with the installation of
MetaEdit+. The installation package includes also other manuals for system administration
(especially for multi-user use) and for language creation using MetaEdit+ Workbench. Web pages
at http://www.metacase.com provide further information: there you will find user references,
discussion forums, downloadable white papers, and FAQs.

MAENAD Grant Agreement 260057

 2014 The MAENAD Consortium 16 (16)

6 References

[1] EAST-ADL Domain-Model Specification, Version 2.1.12, 2013. Available at http://www.east-
adl.info.

[2] MetaCase, EAST-ADL tutorial, MetaCase Document No. EAT-5.0, January, 2014, available at:
http://www.metacase.com/papers/MetaEditPlus_Tutorial_for_EAST-ADL.pdf

[3] MetaCase, MetaEdit+ User Manuals, http://www.metacase.com/support/50/manuals/

