

Grant Agreement 260057

Model-based Analysis & Engineering of Novel Architectures

for

Dependable Electric Vehicles

Report type Deliverable D5.3.1

Report name EATOP: An EAST-ADL Tool Platform

for Eclipse

Dissemination level PU

Status Final

Version number 3.0

Date of preparation 2014-02-14

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 2 (24)

Authors

Editor E-mail

Daniels Umanovskis daniels.umanovskis@arccore.com

Authors E-mail

Daniels Umanovskis daniels.umanovskis@arccore.com

Stefan Voget stefan.voget@continental-corporation.com

Reviewers E-mail

Henrik Lönn henrik.lonn @volvo.com

Sara Tucci sara.tucci@cea.fr

The Consortium

Volvo Technology Corporation (S) Centro Ricerche Fiat (I)

Continental Automotive (D) Delphi/Mecel (S) 4S Group (I)

ArcCore AB (S) MetaCase (Fi) Systemite (SE) CEA LIST (F)

Kungliga Tekniska Högskolan (S) Technische Universität Berlin (D) University of Hull (GB)

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 3 (24)

Revision chart and history log

Version

0.1

Date

2012-06-17

Reason

Initial version

0.2 2012-07-09 EATOP project description added

1.0 2012-08-31 First Release

1.1 2013-08-31 Second Release for review

2.0 2013-09-30 Second Release for M36

3.0 2014-02-14 Third Release for final tooling

Approval Date

Henrik Lönn 2014-02-20

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 4 (24)

Table of contents

Authors..2

Revision chart and history log ...3

Table of contents ..4

1 Introduction ...5

1.1 Purpose of document ..5

1.2 Introduction to contents of the document ..5

1.3 Intended outcome ...5

2 Background ...6

2.1 EAST-ADL ..6

2.2 Relationship to AUTOSAR ..6

3 Scope ..8

4 Description ..9

4.1 Components ...9

5 Relationship to other Eclipse Projects ..12

6 Environment Setup ...13

6.1 Introduction ...13

6.2 Install Java ..13

6.3 Install Eclipse ..13

6.4 Obtain the source code ...13

6.5 Set up the target platform ...14

6.6 Create or verify a run configuration ...14

6.7 Run the demonstrator ...15

7 Using the EATOP demonstrator ...17

7.1 Introduction ...17

7.2 Creating an EAST-ADL model ..17

7.3 Type-Prototype browsing in the Explorer ..19

7.4 Editing instance references ..20

7.5 Advanced instance reference editing ..21

7.6 Navigation help ...22

8 Summary...23

9 References ...24

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 5 (24)

1 Introduction

1.1 Purpose of document

This document constitutes one part of Deliverable D5.3.1 on Tool adaptations for EAST-ADL. It
introduces the Eclipse initiative “EATOP” which is an abbreviation for “EAST-ADL Tool Platform”.

EATOP is an Eclipse-based implementation of the EAST-ADL meta-model. EAST-ADL is a
domain specific language established in the automotive industry. This document describes the
adaptation of the Eclipse / Sphinx framework which constitutes EATOP.

1.2 Introduction to contents of the document

This document describes the general background of EATOP, the technical framework on which it
is built, and gives a brief introduction to the use of EATOP. The document does not serve as an
exhaustive user guide for EATOP but is intended to provide a good introductory-level overview.

1.3 Intended outcome

The general outcome will be an extensible platform, which provides model editors and analysis
plug-ins, which will support the EAST-ADL language for functional-, system-, software- and
hardware-description. For the integration of already existing tools, which work on proprietary meta-
models, model to model transformations will be provided.

With the work of EATOP the usage of EAST-ADL should be simplified and the number of already
existing intermediate formats should be reduced.

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 6 (24)

2 Background

2.1 EAST-ADL

EAST-ADL is a domain specific language to model functional-, system-, software-, and hardware-
architecture in the automotive domain. EAST-ADL has been created by the ITEA (www.itea2.org) funded
project EAST/EEA. Further development has been done in two funded projects ATESST and ATESST2. Since
2010 a European funded project MAENAD (www.maenad.eu) maintains and extends the language with
respect to electrified vehicles and safety development lifecycle modeling. For long-term maintenance and
dissemination the EAST-ADL association (www.east-adl.info) has been founded. It maintains the meta-
model definition and makes the latest version available to the public.

Until now, the EAST-ADL has been used in several tools:

- In the Eclipse MDT project Papyrus a UML2 profile of EAST-ADL has been provided
- TopCased initiative and the project OPEES – both are established in the airbus industry – are using

EAST-ADL
- The commercial tool Volcano Vehicle Systems Architect (VSA) from Mentor Graphics provides

editors for EAST-ADL modeling
- The commercial tool MetaEdit+ from MetaCase provides a meta-model implementation of EAST-

ADL and generic editors of this meta-model
- The commercial tool System Weaver from Systemite provides editors for the EAST-ADL modeling
- Further tools exist from Arcticus, Symtavision, Rapita, RealTime@Work, Chronos

EATOP shall support the work of the EAST-ADL association by providing an Eclipse based tool platform
implementation of the EAST-ADL standard. Until now there had been several initiatives to create Eclipse
based implementations of EAST-ADL. Goal of EATOP is to reconcile such initiatives in Eclipse.

2.2 Relationship to AUTOSAR

AUTOSAR is a design standard in the automotive industry. It focuses on the software architecture for
electronic control units (ECU) in road vehicles, its deployment to networked ECUs in vehicles, and the
configuration of the basic software in such ECUs. The AUTOSAR Tool Platform User Group (ARTOP)
develops common base functionality for creating modeling tools supporting the AUTOSAR standard.
ARTOP essentially encompasses implementations of the different releases of the AUTOSAR meta-model
plus a rich set of services and components for managing and processing AUTOSAR models.

The EAST-ADL meta-model has a close relationship to the AUTOSAR meta-model as both address the
model based development part in a process. East-ADL covers the function- and system-architecture and
AUTOSAR acts with the system configuration and software architecture.

Therefore, EATOP will have a close relationship to the ARTOP (www.artop.org) initiative.

Figure 1 shows the principle how ARTOP generates the EMF- / Ecore-based meta-model implementation.
Similar steps will be realized in EATOP for the EAST-ADL meta-model.

http://www.itea2.org/
http://www.maenad.eu/
http://www.east-adl.info/
http://www.artop.org/

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 7 (24)

Figure 1: Principle relationship between meta-model and EMF-/Ecore-based implementation
shown with the help of the example “AUTOSAR”.

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 8 (24)

3 Scope

EATOP is an infrastructure platform implementation of common base functionality for development tools
that are used to design EAST-ADL compliant systems. This includes at least

 An EAST-ADL meta-model implementation supports several versions of EAST-ADL meta-model

releases. These releases are published by the EAST-ADL association as an Enterprise Architect

project and a XML schema. This input is taken to generate an Ecore-based meta-model

implementation.

 Serialization is supported to enable file- and repository-based persistency of EAST-ADL models.

Serializing and de-serializing EAST-ADL models to and from EAST-ADL XML files and databases.

 Refactoring contains a number of mechanisms to modify EAST-ADL models in a safe way.

 Workspace Management supports managing of EAST-ADL models, which are spread over more

than one XML file.

 Model to model transformation between the different abstraction layers within the EAST-ADL

meta-model.

 Further utilities simplify the handling of EAST-ADL models.

 To enable a seamless workflow in a development process, interfacing and model exchange with

o Requirements Engineering (via ReqIF),

o Software modeling (e.g. via AUTOSAR) and

o HW modeling (e.g. via IPXACT) is enabled.

 Specific platform developments enable safety analysis and timing modeling.

 Consolidation of bridges between EATOP and Papyrus and the synchronization of EAST-ADL EMF

API with the profile implementation.

 Variability management, supporting both the definition of variant-rich EAST-ADL models, as well as

derivation of fully/partly configured instances of these models.

 Serves as an interoperability platform with domain independent abstractions of EAST-ADL like the

CESAR reference technology platform (www.cesarproject.eu) or the MBAT reference technology

platform (www.mbat-artemis.eu).

http://www.cesarproject.eu/
http://www.mbat-artemis.eu/

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 9 (24)

4 Description

4.1 Components

EATOP provides a set of EAST-ADL model editors. The components realizing these services
already exist and are contributed along with the creation of this project (see Code contributions).

 An EMF based meta-model implementation of EAST-ADL.

 A set of graphical design editors for the different abstraction layers of an EAST-ADL based model.

These editors enable a developer to design an automotive system on vehicle level, through the

functional analysis level down to the functional design level and hardware level. A package diagram

is the root diagram and the entry point for each EAST-ADL model. On each abstraction level several

editors are provided to support the type/prototype principle of the meta-model.

As ARTOP is based on the Eclipse project Sphinx (www.eclipse.org/sphinx), so is EATOP. Sphinx
eases the creation of integrated modeling tool environments supporting individual or multiple
modeling languages. Figure 2 presents the Sphinx-based architecture.

Figure 2: The architecture of EATOP resembles ARTOP and is based on Sphinx and Eclipse.

 The EAST-ADL meta-model is implemented using the Java programming language and the

Eclipse Modeling Framework (EMF). The implementation supports several releases of the EAST-

ADL meta-model. The goal is to provide meta-model implementations in EATOP close to the point in

time when the EAST-ADL association releases a new meta-model version.

 The Serialization component provides file- and repository-based persistence for EAST-ADL

models, serializing and de-serializing EAST-ADL models to and from EAST-ADL XML-files and

databases.

http://www.eclipse.org/sphinx

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 10 (24)

 The abstraction level M2M component realizes a set of model to model converters that enable the

generation of a skeleton on a more concrete meta-model level based on a model on a more abstract

meta-model level.

 The EAST-ADL Explorer organizes the model elements and provides an adapted view of the

generic Eclipse explorer.

 A validation engine partially based on Sphinx runtime extensions that minimizes the effort to create

validation constraints for EAST-ADL models. A set of constraints is included and specified in the OCL

language.

 Specific tool adapters enable the integration of the EATOP components into existing commercial or

non-commercial tools. These adapters either enable import/export of models between the tools and

EATOP or enable the integration using the Eclipse plug-in concept.

One core part of the work in EATOP is the translation of the EAST-ADL meta-model definition,
which is provided in the form of a XML model authorized with Enterprise Architect, into an EMF-
/Ecore-based implementation. The following picture summarizes the most important relationships.

Figure 3: A tool chain for providing an EAST-ADL meta-model implementation ranging from
language definition, via language development tools to user modeling tools. Intermediate artifacts

are also indicated to show the language information needed to implement tools.

Figure 3 shows the different steps. These are described below.

1. Enterprise Architect is used to model the EAST-ADL meta-model in UML. This meta-model
contains all elements of the language, including their attributes and relationships. Diagrams

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 11 (24)

are used to represent these elements. The resulting meta-model is in the Enterprise
Architect project format (EAP). Enterprise Architect can also export to XMI format.

2. The EAST-ADL association already provides a schema definition and a UML2 profile which
can directly be used. E.g. the Eclipse project Papyrus uses the UM2 profile.

3. EATOP generates an API to access and manipulate a model. This API can be used for
building all kinds of applications on top of EAST-ADL. Examples are form-based and
graphical EAST-ADL editors. EATOP provides a set of such editors. These can be used as
starting point for full-featured EAST-ADL editors in commercial tools or custom editors
developed by the EAST-ADL tool users.

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 12 (24)

5 Relationship to other Eclipse Projects

 EATOP is built on top of the Eclipse Platform and EMF.

 EATOP also uses complementary components of the Eclipse Modeling Project (EMP).

These include EMF Transaction, EMF Validation and GMF.

 The architecture is set up on top of Sphinx mainly using the workspace management, the

validation runtime extensions, compare & merge integration, and the EMF runtime and

Eclipse platform extensions. Where possible, it follows the patterns set by EATOP.

 EATOP itself is an official Eclipse Project in the Modeling category.

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 13 (24)

6 Environment Setup

6.1 Introduction

This chapter describes how to set up a development environment that can be used to run and
further develop EATOP. The environment is a plugin development environment for Eclipse. The
instructions provided in this chapter are not the only way to get a working development
environment, and the applicability of this information may change in the future as newer versions
of third-party software get released.

6.2 Install Java

EATOP requires a Java installation. While a Java Runtime Environment is sufficient to run
EATOP, a JDK (Java Development Kit) is recommended for development. The latest version of
Java at the time of this Deliverable’s release is Java 7 Update 51. EATOP is also known to work
with the final version of Java 6, which is Java 6 Update 45.

The latest version of Java for various operating systems can be downloaded from:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

EATOP is also known to work with the alternative OpenJDK implementation 1.6.0_27 or later.

On Windows, Java may be installed by launching the executable downloaded from the Oracle
website. On Linux, Java may additionally be available as a package from your distribution's
repositories.

6.3 Install Eclipse

Eclipse is required as the IDE (Integrated Development Environment) and platform on top of which
EATOP would run. Eclipse may be downloaded from:

http://www.eclipse.org/downloads/

Versions 4.3 (Kepler) and 4.2 (Juno) are known to work with EATOP. Eclipse comes packaged in
archive files that should be extracted, and can be run by launching the Eclipse executable from the
extracted location. For the last MAENAD version of EATOP, 4.3 Kepler is recommended.

Further information on downloading and installing Eclipse can be found in the Eclipse FAQ and in

the Eclipse Readme. A general introduction to Eclipse as a Java IDE can be found in this article.

Note: Under Windows, the path to Eclipse should preferably be short, such as: C:\Work\Eclipse

6.4 Obtain the source code

The source code for EATOP can be acquired from the EATOP repository. The repository is
located at https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/ The best way to get a
copy is to use Git to clone the repository. This can be accomplished by running the following
command:

git clone https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/

An alternative to using Git from the command line is to use the EGit plugin which comes with
Eclipse to access the Git repository from within Eclipse.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://wiki.eclipse.org/FAQ_Where_do_I_get_and_install_Eclipse%3F
http://www.eclipse.org/eclipse/development/readme_eclipse_3.5.html#Running Eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/
https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 14 (24)

The source code should then be imported into an Eclipse workspace, by choosing File->Import
from the menu. If you checked out the source using Git, you can use the option to import from Git,
which will be provided in the Import wizard.

Not all projects that are in the repository are used in EATOP bundles. Certain projects may be
outdated or unnecessary. The list of projects currently being used can be obtained from the
definition in the file EATOP_Trunk/eel/releng/org.eatop.releng.builds/pom.xml.

6.5 Set up the target platform

It is important to set up the correct target platform, otherwise you will not be able to run or develop
for EATOP. The target platform is part of the source code repository, and exists as an Eclipse

project called org.eatop.targetdefs. The project consists of two files specifying different targets,

called 4.2.target and 4.3.target. These correspond, respectively, to target platforms for versions
4.2 and 4.3 of Eclipse. Opening either file within Eclipse will allow you to set it as the current target
platform by clicking a linker in the upper right corner.

Figure 4 selecting the target platform

Version 4.3 is newer and therefore recommended, but version 4.2 is also functional.

6.6 Create or verify a run configuration

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 15 (24)

To run EATOP, you need to have the correct Run Configuration within Eclipse. Choose Run->Run

Configurations from the Eclipse menu, and there should already be a configuration called Eatop
Technology Demonstrator. If there is not, then create a new configuration under the section
Eclipse Application, and configure it to run the product

org.eatop.eel.examples.demonstrator.product.

Further, you should make sure that correct arguments are provided to the Java Virtual Machine for
the run configuration. These are available in the VM Arguments section of the Arguments tab.

Figure 6: Java Virtual Machine arguments

These arguments allocate sufficient amounts of memory to the Java Virtual Machine. If you
experience frequent crashes in the demonstrator, of if the demonstrator crashes when trying to
open or create a project, then the most likely cause is that the necessary VM arguments are
missing and thus the demonstrator is not receiving enough memory.

6.7 Run the demonstrator

If, at this point, you are seeing compile errors in Eclipse but you have correctly set the target
platform, it likely means that you have imported some projects from the repository that are
outdated and not required for EATOP. You may close such projects altogether, or disable them
from the run configurations Plug-ins tab.

Figure 5: Eclipse Run Configuration

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 16 (24)

Once you have completed the previous steps, you should be able to run the EATOP demonstrator
from within Eclipse. To do it, just run the run configuration that is already present or that you
created in the previous section. If everything has been done correctly, you'll see the EATOP
demonstrator logo as the application begins to load.

Figure 7: EATOP demonstrator starting up

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 17 (24)

7 Using the EATOP demonstrator

7.1 Introduction

Overall, the EATOP demonstrator should be familiar to those who have previously used Eclipse,
and especially to those who have used Eclipse-based products from the Artop project, such as the
Artop demonstrator or the Artext demonstrator.

Please note that this Deliverable focuses on the functionality which has been introduced to EATOP
as part of the MAENAD project, and does not provide information about the metamodel generation
from Enterprise Architect or other such non-MAENAD features.

In its default view, the EATOP demonstrator looks similar to the figure below.

The most important EATOP Demonstrator component is the EATOP Explorer, located in the left
part of the screen. It shows any EADL models that are loaded in the workspace, and provides an
interface for modifying them. The context menu that can be accessed by right-clicking in the
Explorer also provides options to import existing projects, create new ones, and others.

7.2 Creating an EAST-ADL model

This section shows the simplest procedure to create an EAST-ADL model and add some elements
to it.

To create a model, first you need to create an EAST-ADL project. In the File menu of the

demonstrator, or the context menu in the Explorer, choose New → EAST-ADL Project. You will
be presented with a window asking you to name your project and select a location for it. By
default, the project is automatically set to use the latest EAST-ADL release.

Figure 8: EATOP default view

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 18 (24)

Figure 9 Creating a new project

The newly created project will show up in the EATOP Explorer. Right-click it and choose New →

EAST-ADL File to create an eaxml file that will store your model.

 Figure 10: Creating an EAST-ADL file

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 19 (24)

Note that, when you create a new EAST-ADL file, you're also given the option to immediately
create a top-level EAPackage in the new file. When you have created the file, you can expand it in
the Explorer and you will see that it consists of an EAXML element and an EAPackage (unless you
chose not to create a package when creating the file).

Now you can create your model by adding elements to the packages. Just right-click an element in
the Explorer to add a child to it. For example, you can right-click a package and add a
HardwareComponentType to it, and then right-click the HardwareComponentType to add an
IOHardwarePin to it. You can select the child to be added from a metamodel-based category, or
just select among all eligible elements.

To set the names of model elements, and to edit their other properties, you should use the
Properties view that is located horizontally at the bottom part of the EATOP demonstrator's screen.

7.3 Type-Prototype browsing in the Explorer

One of the features that the EATOP Explorer adds for extra user convenience is the display of a
virtual containment tree in the Explorer that reflects Type-Prototype relationships which are
common in the model.

Suppose you have a HardwareComponentType called hwCompType1, and you have a
HardwareComponentPrototype called prototypeOfType1, and the type of prototypeOfType1 is
hwCompType1. If such a relationship exists, then any children of hwCompType1 will also be
shown if you expand prototypeOfType1 in the Explorer because the prototype has access to them
through its type. This is shown in the figure below.

Figure 13 A prototype’s virtual children

In this case, aHardwarePin is an IOHardwarePin that exists in the hwCompType1 type, but it is
also shown as a child of the prototypeOfType1 element. Also note that the prototypeOfType1

Figure 12: Properties section when editing an element's name

Figure 11: Created elements

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 20 (24)

element is shown in italics, indicating that it's a prototype with a set type and therefore shows
virtual child elements that belong to the type.

To make it easier to recognize elements, many element types have their own icons, as you can
see above for the Actuator, HardwareComponentPrototype and IOHardwarePin types.

Of course, viewing the prototype's properties in the Properties view also reveals the type that it
belongs to.

Also, if you right-click the prototype in the Explorer, the context menu will show a Goto type
command which will then take you to the prototype's type in the Explorer.

7.4 Editing instance references

Many elements of the EAST-ADL meta-model include instance references. The EATOP
demonstrator provides a more convenient interface for editing instance references, as well as
intelligent functionality for automatically completing the context of an instance reference.

As an example, let's use an EventFunction element, shown above, which contains an instance
reference to a DesignFunctionPrototype. When you select an element with an instance reference
in the EATOP Explorer, then the properties section, which usually looks like Figure 12, gets two
extra tabs. One is Edit Instance Refs, and the other is Advanced Instance Refs, shown below.

You do not have to add an instance reference manually to the parent element. If the element can
have instance references but does not have any, an instance reference will be created
automatically when you try to edit it. For example, if you add a new EventFunction to your model,
you can proceed straight to instance reference editing.

The simplest way to edit an instance reference is from the Edit Instance Refs tab, where you only
need to select the target for the instance reference. As shown in the figure below, you have
access to the instance reference's target property. Note that, if you click in the Value field, then
instead of the usual Eclipse-based list of items, you get a button that calls the instance reference
editor.

Figure 16: Extra tabs in the

property section

Figure 15: An EventFunction element

Figure 14: A prototype with a set Type property

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 21 (24)

The editing of an instance reference target occurs through a tree view like that which is shown
below. The tree in the instance reference editing dialog acts the same way as the Explorer tree,
that is, it will show virtual children of prototypes. Thus you can navigate directly to your desired
target by going through the prototypes.

After you have selected the target in the dialog window shown above, the instance reference's
context will be automatically filled, and the instance reference tab will now show the full path to the
target through its context.

7.5 Advanced instance reference editing

Sometimes you may wish to manually set the context of an instance reference, or to disable the
behaviour of automatically completing the context after setting the target. This may especially be
desirable when working with incomplete or inconsistent models.

Figure 19: Target being shown along with full path

Figure 18: Selecting a target for an instance

reference

Figure 17: Editing of an instance reference

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 22 (24)

From the Advanced Instance Refs tab in the property section, you have explicit access to the
instance reference's context which you can then edit using a dialog just like the one shown in
Figure 18. Also, when you edit a target from the Advanced Instance Refs tab, you will be able to
control whether the EATOP demonstrator attempts to automatically set the context. The editor
window gets a checkbox controlling this behaviour. If you deselect it, then context will not be
changed.

Finally, if you wish, you can select the instance reference itself (which is a separate EMF element)
in the Explorer tree, as shown below. If you select the raw reference that way, then the property
section will be the default one from Eclipse, and editing the instance reference from it will not show
the virtual path-through-context or have any other EATOP-specific assistance.

7.6 Navigation help

EATOP provides certain features that make model navigation faster in the EAST-ADL Explorer.
When you right-click an element, additional submenus will be shown if there are other elements
that refer to this one. You can then see a list of such referring elements and jump to any of them in
the Explorer.

For example, below you can see that the element MyTimeQuantity is referred to by the
MyTimeUnit element in the DataTypesPackage package. Clicking on MyTimeUnit in the popup
menu would show it in the Explorer.

Figure 21: Navigation help for references

Figure 20: The raw instance reference selected

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 23 (24)

8 Summary

The EATOP demonstrator is a complete Eclipse-based product that can be used to create and edit
EAST-ADL models. The demonstrator is technologically based on Eclipse and Sphinx, and its
functionality closely resembles that of the Artop demonstrator which can be used with AUTOSAR
models. EATOP is an official Eclipse Project within the Modeling category.

In addition to the usual model editing functionality provided by Sphinx, the EATOP demonstrator
includes a number of enhancements specifically for ease of use with EAST-ADL models. These
enhancements include features for working with type-prototype relationships and instance
references in the model, as well as features for ease of navigation.

MAENAD D5.3.1 Grant Agreement 260057

 2014 The MAENAD Consortium 24 (24)

9 References

SAFE project - http://www.safe-project.eu/

EATOP Wiki pages - https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/w/list

EATOP repositories - https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/source/browse/

ARTOP project - https://www.artop.org/

EAST-ADL Association - http://www.east-adl.info/

http://www.safe-project.eu/
https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/w/list
https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/source/browse/
https://www.artop.org/
http://www.east-adl.info/

