

Grant Agreement 260057

Model-based Analysis & Engineering of Novel Architectures

for

Dependable Electric Vehicles

Report type Deliverable D4.2.1

Report name Profile for EAST-ADL

Dissemination level PU

Status Final

Version number 2.1

Date of preparation 2014-02-28

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 2 (47)

Authors

Editor E-mail

Sara Tucci-Piergiovanni

Sara.Tucci@cea.fr

Authors E-mail

Sara Tucci-Piergiovanni

Chokri Mraidha

Sara.Tucci@cea.fr

Chokri.Mraidha@cea.fr

Reviewers E-mail

Hans Blom hans.blom@volvo.com

Frank Hagl frank.hagl@continental-corporation.com

The Consortium

Volvo Technology Corporation (S) Centro Ricerche Fiat (I)

Continental Automotive (D) Delphi/Mecel (S) 4S Group (I)

ArcCore AB (S) MetaCase (Fi) Systemite (SE) CEA LIST (F)

Kungliga Tekniska Högskolan (S) Technische Universität Berlin (D) University of Hull (GB)

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 3 (47)

Revision chart and history log

Version Date Reason

0.1 2010-12-06 Outline

1.0 2011-08-31 Intermediate

1.1 2011-11-16 Adding sections on timing and events

1.2 2012-07-27 Correcting and updating sections on timing and events

1.3 2013-07-23 New version released for review. Includes relationships between
EAST-ADL and MARTE for functional modelling, hardware
modelling, verification&validation, non-functional properties
speficiation. Update to the MARTE profile for Timing.

2.0 2013-09-30 Version 2.0 based on review comments and final adjustments

2.1 2014-02-12 Version 2.1, added reference to the stand-alone UML profile for
EAST-ADL 2.1.12

Approval Date

Henrik Lönn 2014-02-12

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 4 (47)

Table of contents

Authors..2

Revision chart and history log ...3

Table of contents ..3

1 Introduction ...5

2 Overall strategy for investigation of mappings between EAST-ADL and MARTE6

3 Functional modeling and MARTE GCM ..8

3.1 GCM in a nutshell ...8

3.2 Functional Modeling in a nutshell ..12

3.3 GCM and Functional modeling comparison ..15

3.4 Functional modeling as specialization (profile) of plain UML ..15

4 Hardware modeling and MARTE HRM ...18

4.1 HRM in a nutshell ..18

4.2 Hardware Modeling in a nutshell ...23

4.3 HRM and Hardware modeling comparison ...23

4.4 Hardware Modeling specialization (profile) of plain UML ..24

5 Allocation modeling in EAST-ADL and MARTE ..29

5.1 Alloc in a Nutshell ...29

5.2 Allocation constructs in EAST-ADL ..30

5.3 Alloc and EAST-ADL Allocation comparison ...31

5.4 EAST-ADL Allocation constructs as specialization (profile) of plain UML ..32

6 Generic Constraints and MARTE NFPs ...33

6.1 NFPs in a nutshell ...33

6.2 Generic Constraints in a nutshell ..35

6.3 NFPs and Generic Constraints comparison ...35

6.4 Generic Constraints as specialization (profile) of plain UML ..36

7 Verification and Validation and MARTE GQAM ..37

7.1 GQAM in a nutshell ...37

7.2 Verification and Validation in a nutshell ..38

7.3 GQAM and Verification and Validation comparison ..39

7.4 Verification and Validation as specialization (profile) of plain UML ...40

8 Timing Modeling and MARTE Time ..41

8.1 MARTE Time in a nutshell ..41

8.2 The MARTE (Time) Profile for EAST-ADL Timing Modeling ..43

8.3 Summary...46

9 References ...47

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 5 (47)

1 Introduction

In the previous series of projects ATESST1&2, the EAST-ADL language was implemented as a
UML profile – see [1]. During these projects a study of the convergence between EAST-ADL and
OMG language for modeling real time and embedded systems, MARTE, was conducted. It
resulted in an annex to the MARTE specification describing how MARTE could be used to define
an EAST-ADL model – see [3]. This study focused mainly on the structural description of an
EAST-ADL system, in terms of hierarchical components, connectors and ports.

In the current project, MAENAD, the WT4.2 work task continues the work done to achieve a better
understanding of the relationship between EAST-ADL and MARTE. For this it was decided to
design a new version of the UML profile, which implements the EAST-ADL language. This
implementation had the objective of explicitly connecting the stereotypes of the EAST-ADL profile
to MARTE, making EAST-ADL profile de facto a sub-profile of MARTE.

After a deep investigation (herein reported) between MARTE and EAST-ADL, the initial objective
of making the whole EAST-ADL profile a sub-profile of MARTE revealed to be not totally
reachable. In particular it has been clear that MARTE is at lower abstraction level than EAST-ADL
for many aspects, as for instance the analysis support (Verification and Validation in EAST-ADL).
For other aspects as the functional modeling (component modeling in MARTE) it has been clear
that the mapping between the two languages was difficult, as a set of concepts of MARTE were
more specialized than EAST-ADL concepts, while another set of concepts were more specialized
in EAST-ADL.

The only aspect that easily conducted to a MARTE specialization for EAST-ADL was the timing
aspect. This is not surprisingly as the same group of researchers worked at both languages for the
timing aspect, at the OMG for MARTE and in the Timmo-2-Use project for EAST-ADL.

This deliverable analyzes the relationship between MARTE and EAST-ADL. Section 3 presents
and compares MARTE component modeling and EAST-ADL1 functional modeling. Section 4
presents and compares MARTE hardware resource modeling and EAST-ADL hardware modeling.
Section 5 presents and compares allocation handling in both languages. Section 6 presents and
compares non-functional properties handling in both languages. Section 7 focuses on languages
constructs offered by the two languages to support verification and validation activities, while
Section 8 covers the timing aspect, presenting a possible specialization of MARTE concepts for
EAST-ADL.

Even if this deliverable is devoted to the MARTE/EAST-ADL investigation, it is important to remark
that a parallel work in the MAENAD project aimed at maintaining the UML profile, developed
during ATESST1&2, up-to-date with respect EAST-ADL evolutions up to EAST-ADL 2.1.12. More
details on this work can be found in the deliverable D5.1.1 and in a separated document
containing the profile specification [6].

1 The MARTE/EAST-ADL investigation considers the EAST-ADL 2.1.10 specification.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 6 (47)

2 Overall strategy for investigation of mappings between EAST-ADL and MARTE

The starting point for the investigation of the mapping between EAST-ADL and MARTE is the
study done in previous projects, which resulted in the EAST-ADL annex to MARTE (see [3]) in
June 2009. However several changes in the EAST-ADL language have occurred in the mean time,
which makes the annex slightly outdated, although still valid in essence. The reminder of this
chapter will provide an update of this mapping study.

The overall strategy for going further in the EAST-ADL/MARTE mapping study consisted in
analyzing the different aspects covered by these two languages separately. A first coarse-grained
mapping between EAST-ADL packages (giving an organization for EAST-ADL constructs) and
MARTE sub-profiles (giving an organization for MARTE stereotypes) has been established. In this
respect Table 1 presents the main EAST-ADL packages [4], and the correspondence with MARTE
sub-profiles [3], if such correspondence there exists.

EAST-ADL package MARTE sub-profile(s)

System Modeling (from Structural

Constructs)

None

Feature Modeling (from Structural

Constructs)

None

Vehicle Feature Modeling (from Structural

Constructs)

None

Function Modeling (from Structural

Constructs)

Generic Component Model (GCM),

Allocation Modeling (Alloc)

Hardware Modeling (from Structural

Constructs)

Hardware Resource Modeling (HRM),

Allocation Modeling (Alloc), Generic

Resource Modelling (GRM)

Environment (from Structural Constructs) None

Behavior (from Behavioral Constructs) None

Variability (from Variability) None

Requirements (from Requirements) None

Use Cases (from Requirements) None

Verification Validation (from Requirements) Generic Quantitative Analysis Modeling

(GQAM), Non Functional Properties (NFPs)

Timing (from Timing) Time Modeling (Time)

Timing Constraints (from Timing) Time Modeling (Time)

Events (from Timing) Time Modeling (Time)

Dependability (from Dependability) None

Error Model (from Dependability) None

Safety Constraints (from Dependability) None

Safety Requirement (from Dependability) None

Safety Case (from Dependability) None

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 7 (47)

Generic Constraints Non Functional Properties (NFPs)

Table 1 : EAST-ADL packages and corresponding MARTE sub-profiles

As can be noted, the only EAST-ADL packages that have a correspondence with MARTE sub-
profiles are those packages related to logical design, platform modeling, allocation, timing and
analysis. This comes from the fact that the two languages have very different scopes. EAST-ADL
is intended to be a system-level language, covering aspects as features, variability, requirements
and safety analysis. MARTE is intended to be used for the software design of real-time embedded
systems, providing concepts for detailed software and hardware real-time architecture designs,
timing and performance analysis. For sake of completeness Table 2 shows the main MARTE sub-
profiles and the correspondence (if any) with EAST-ADL packages.

Let us remark that the correspondence shown in the two tables is a coarse-grained
correspondence, i.e. it may be the case that some concept in an EAST—ADL package is not
covered in the corresponding MARTE sub-profile and vice versa. It may be also the case that two
similar concepts can be found but one concept may represent a specialization of the other one, a
generalization or (even being similar) neither a generalization nor a specialization. The detailed
relationships between language concepts will be presented in the next sections. More in detail, we
focus on the mapping between EAST-ADL constructs to MARTE stereotypes (focusing then on
correspondences shown in Table 1), studying possible mappings if similar concepts can be found
and highlighting relationships (e.g. specialization, generalization, equivalence) between similar
concepts. Let us note that the initial objective was to design a MARTE profile for EAST-ADL, i.e. to
find a specialization of MARTE concepts to represent EAST-ADL constructs. Let us remark that
this is possible only if the used MARTE concept is more general than the EAST-ADL construct.
We will see that this relationship is true only for timing concepts, keeping the idea of a MARTE
profile for EAST-ADL valid for the Timing package.

MARTE sub-profile EAST-ADL package(s)

 Non-functional Properties Modeling (NFPs) No specific package, only Generic Constraints
in EAST-ADL but no specific modeling of NFPs

Time Modeling Timing

Generic Resource Modeling (GRM) None

Allocation Modeling (Alloc) Functional Modeling, Hardware Modeling

Generic Component Model (GCM) Functional Modeling

High-level Application Modeling (HLAM) None

Software Resource Modeling (SRM from

Detailed Resource Modeling)

None

Hardware Resource Modeling (HRM from

Detailed Resource Modeling)

Hardware Modeling

Generic Quantitative Analysis Modeling

(GQAM)

Verification Validation (from Requirements)

Schedulability Analysis Modeling (SAM) None

Performance Analysis Modeling (PAM) None

Table 2 MARTE sub-profiles and corresponding EAST-ADL packages

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 8 (47)

3 Functional modeling and MARTE GCM

As already pointed out, the functional modeling constructs are organized in EAST-ADL in a single

Table 3 MARTE sub-profiles and modeling purposes

package (in its turn sub-package of Structural Constructs). In order to find good candidates in
MARTE for the mapping of functional modeling constructs, we should first inspect those sub-
profiles whose modeling purpose is the modeling of logical designs. Table 3 shows modeling
purposes of the different MARTE sub-profiles. From the table, only two sub-profiles pursue the
logical modeling purpose, i.e. GCM and HLAM. HLAM, however, is not relevant in the context of
EAST-ADL as it used to model object-oriented execution semantics. For this reason, we will select
only GCM for the mapping of functional modeling constructs.

3.1 GCM in a nutshell

The Generic Component Model (GCM) of MARTE offers rich semantics for component modeling,
enabling various models of computation and communication.

A MARTE Component is a simple UML Class, i.e. UML has not been specialized to represent a
MARTE Component, but simple UML Classes are used.

On the other hand the UML Port has been specialized to represent two different MARTE
specializations: FlowPort and ClientServerPort. Figure 1 presents the MARTE profile for ports.

Modeling purpose MARTE subprofile

Non-functional Property Specification Time, NFPs

Logical Design HLAM, GCM,

Verification and Validation (Performance,

Schedulability Analysis)

GQAM, SAM, PAM,

Platform Design SRM, HRM and GRM

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 9 (47)

Figure 1 MARTE Profile for GCM Ports

FlowPorts

FlowPorts have been introduced to enable data flow-oriented communication between
components, where messages that flow across ports represent data items. A flow port specifies
the input and output items that may flow between a structured component and its environment.
The specification of what can flow is achieved by typing the flow port with a specification of items
that may flow along the ports and their connectors. This can include typing an atomic flow port with
a single type representing the items that flow in or out as shown in Figure 2, or associating the
FlowPort with a set of FlowProperties, where each FlowProperty has its own direction, which
represent the properties of a FlowSpecification of an item that flows, as shown in Figure 3.

Figure 2 GCM atomic flow ports

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 10 (47)

Figure 3 GCM non-atomic flow ports

There are in GCM two ways of specifying data-flow communications semantics:

 The pull form of the data flow semantics with the following characteristics:

• Passive: the arrival of data in the data store does not trigger behaviors per se. It is
indeed additional actions, for example time-triggered actions, that when needed
pull the data from the data store.

• Non-depleting: the use of data in the store does not remove it from the store.

The way of modeling the pull semantics in GCM is shown in Figure 4. A delegation
connector between the port and the inner property currentSpeed of Regulator component
(in the figure it is graphically represented as a property typed Regulator), establishes the
link between the Regulator FlowPort and the data store currentSpeed. Let us note that the
data store is typed by the type of data items that circulate through the port (Integer data
items in this case). The size of the data store is specified by its multiplicity. By default a
data store has size equal to one. Let us note that if multiplicity is greater than one, then it is
possible to specify the order of items in the data store, thanks to the <<dataPool>>
stereotype applied to the data store property.

Figure 4 GCM flow ports - pull semantics

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 11 (47)

As already mentioned, for the pull semantics, the arrival of data in the store does not
trigger any particular behavior per-se. Additional actions have to be explicitly modeled in
order to consume data from the data store. A time-triggered activation is depicted in Figure
5. In this case the Tick signal is received at the tick port. Tick (generated by a clock not
explicitly modeled in the figure) triggers the activation of the state machine Behavior. When
Tick is received the Update activity is invoked. The Update activity is composed by a
ReadStructuralFeatureAction with structuralFeature=currentSpeed, i.e. a read from the
data store currentSpeed.

SM Behavior

ON

Tick/Update()
Regulator

Update

tick: Tick

ReadcurrentSpeed

inspeed: Integer[1]

ReadStructuralFeatureAction

where

‘structuralFeature=currentSpeed’

currentSpeed:Integer[1]

Figure 5 Time-triggered activation

 The push form of the data flow semantics, with the following characteristics:

• Active: the arrival of data in the data store triggers execution of some behavior.

• Depleting: the data arriving on the port is not stored locally. Data is indeed
conveyed to the triggered behavior.

Figure 6 shows an example of push semantics. In this case the inSpeed port is a
behavioral port conveying data to the activity (Classifier behavior for Regulator)
DataDrivenClassifierBehavior. Semantics of the push version of the inSpeed flow port
dictates that a data event is raised each time the data is received. This event triggers the
execution DataDrivenClassifierBehavior. Because the AcceptEventAction of this activity
owns a trigger for the raised data event, i.e. an event stereotyped <<DataEvent>> whose
‘classifier=Integer’.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 12 (47)

Figure 6 GCM Flow Ports - push semantics

ClientServerPorts

ClientServerPorts support a request/reply communication paradigm (also called client-server
model of communication), where messages that flow across ports represent operation calls or
signals. A ClientServerPort can have PortSpecificatioKind to featureBased (see Figure 1). In this
case, we have a clientServerSpecification on interface (<<clientServerSpecification>> stereotype
applied on an Interface). Each Operation/Signal can be either provided or required using
ClientServerFeature. When the ClientServerFeature is an Operation, it represents a service that
the owning structured component may provide and/or require via this port. In the case of a
Reception, it represents a signal that they may publish (in this case, we consider the feature is
required) and/or consume (in this case, we consider the feature is provided) via this port. Just like
flow ports, a client server port can be atomic (i.e., /isAtomic = true). In this case, the
ClientServerPort has no features, and the port is directly typed (via its attribute type inherited from
Foundations::Property) by the signal it may produce and/or consume (with respect to its attribute
kind).

3.2 Functional Modeling in a nutshell

Figure 7 shows an excerpt of the EAST-ADL domain specification for Ports. Three different ports
specialize here abstract FunctionPort, namely FunctionFlowPort, FunctionClientServerPort and
FuntionPowerPort. FunctionFlowPort is used for data-flow communication, while
FunctionClientServerPort supports client/server communication via operation calls.
FunctionPowerPort is a FunctionPort for denoting the physical interactions between environment
and sensing/actuation functions.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 13 (47)

Figure 7 Ports

As for the semantics of activation through ports, EAST-ADL provides each FunctionType with a
FunctionBehavior. The way in which the behavior is activated is specified through events specified
directly for functions or for their ports. EventFunction is an event relevant for the activation of the
function, while EventFunctionFlowPort and EvenFunctionClientServerPort specify events on ports.

These events are used in conjunction with FunctionTrigger to define the semantics of activation of
the FunctionBehavior (see Figure 8 and Figure 9). A FunctionTrigger represents the triggering
parameters necessary to define the execution of a FunctionType or FunctionPrototype. Triggering
is either time-driven (triggering kind equal to TIME) or event-driven (triggering kind equal to
EVENT). Let us note that regardless of the type of activation, once activated, the function
execution follows the following semantics: read of all input ports, execute behavior with fixed
inputs (run-to-completion), write on output ports.

In the case of event-triggered activation, the port association for FunctionTrigger specifies the
FunctionPorts that are referred to in the FunctionTrigger (if any). EventFunctionFlowPorts and
EventFunctionClientServerPorts are used in conjuction with FunctionTrigger with triggerPolicy set
to Event. In this case the FunctionBehavior is executed upon the arrival of data/request on ports.

Let us note that ports for a FunctionTrigger are specified only if the triggering kind is set to
EVENT.

In case of time-triggered activation FunctionTrigger points to the EventFunction of the function and
defines a triggerPolicy set to TIME. The timing constraint associated to the EventFunction
provides information about the period.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 14 (47)

Let us note that the time-triggered activation in EAST-ADL can only be expressed for the function,
i.e. no two different frequencies can be defined for triggering function activation in time-triggered
mode.

Figure 8 FunctionTrigger and FunctionBehavior

Figure 9 Events for Ports

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 15 (47)

3.3 GCM and Functional modeling comparison

In this section we discuss similarities and differences between EAST-ADL and GCM MARTE.

Inspecting Figure 1 and Figure 7 we observe that FunctionFlowPort could have, as natural
corresponding concept in GCM, the FlowPort stereotype. However, FlowPort of GCM supports
non-atomic flow ports, in which a flow specification can define multiple flows with possible different
directions. This is not possible for FunctionFlowPort. This fact implies that FunctionFlowPort
cannot be seen as a specialization of FlowPort. In practical terms, the isAtomic attribute will be
inherited by the FunctionFlowPort if represented as specialization of FlowPort, which will violate
the EAST-ADL domain model specification.

A similar reasoning can be applied to FunctionClientServerPort and GCM ClientServerPort. In this
case ClientServerPort supports feature-based specification that (as in the case of
FlowSpecification) can define multiple Operation/Signal of different kind (provided and required).

As for FunctionPowerPort, no correspondent concept in GCM can be found. FunctionFlowPort can
then only see as specialization of UML Port.

Another interesting point is the comparison of activation semantics. In MARTE pull and push
semantics for ports are very flexible but pull semantics have to be explicitly modeled (e.g. time-
triggered pulling of the data store). In EAST-ADL push semantics can be expressed with
FunctionFlowPorts and FunctionClientServerPort, while pull-semantics is only restricted to time-
triggered activation of the whole function.

In summary, both languages provide constructs able to model a functional architecture with flow
and service oriented communication, with both time and event-triggered activation patterns for
function/component execution. In this respect EAST-ADL is more restrictive as it limits the
execution semantics to synchronous and run-to-completion executions. In MARTE execution
semantics is a variation point and needs to be explicitly modeled.

3.4 Functional modeling as specialization (profile) of plain UML

In this section we present EAST-ADL specializations for the main elements of the EAST-ADL
language which concern functional modeling. As stated in Section 3.3, even if the two languages
provide similar concepts, EAST-ADL concepts cannot be seen as specializations of MARTE ones.
For this reason EAST-ADL concepts can only be specialized from UML (higher-level) concepts.
The following table presents UML specializations for EAST-ADL Functional modeling.

EAST-ADL concept Description UML

concept

MARTE stereotype

FunctionType It is an abstract concept, with
concrete subtypes appearing in
various levels (e.g.
AnalysisFunctionType,
DesignFunctionType etc.) It is the
functionality provided by a car on that
level.

Class None: The stereotype
FunctionType is
introduced.

FunctionPrototype It is an abstract concept, with
concrete subtypes appearing in
various levels (e.g.
AnalysisFunctionPrototype, etc.)
Appear as parts of FunctionTypes
and are typed by a FunctionType.
This allows for a reference to the
occurrence of a FunctionType when it

Part None: uses the plain
UML2 part concept. A
FunctionPrototype will be
represented as a property
typed by a FunctionType.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 16 (47)

acts as a part.

FunctionPort The FunctionPort is an abstract port
for data-flow or client-server
interaction, which has several
concrete subtypes

Port None : uses UML2 port
concept

FunctionFlowPort The FunctionFlowPort represents a
port that exchanges data. An
EADirectionKind attribute specifies
the direction of the flow (in, inout,
out). The associated EADatatype
specifies the type of data.

FunctionFlowPorts are single buffer
overwrite and non-consumable.

Port None : uses UML2 port
concept.

FunctionPowerPort The FunctionPowerPort is a concrete
port for denoting the physical
interactions between environment
and sensing/actuation functions, it
essentially features
CompositeDatatype as type in which
two variables (across and through)
represent the physical variables
exchange

Port None : uses UML2 port
concept

FunctionClientServerInterface The FunctionClientServerInterface is
used to specify the operations in
FunctionClientServerPorts.

Interface None : uses UML Interface
concpet

Operation Operation features a list of
EADatatypePrototype for arguments
and one optional additional return
parameter.

Operation None: uses the plain
UML2 operation concept

FunctionClientServerPort FunctionClientServerPort is a port for
client-server interaction. An attribute
clientServerType:ClientServerKind
defines the type of exchange (client
or server). The port is typed by a
FunctionClientServerInterface, which
provides the signature of the
operations available or requested by
the port.

Port None : uses UML2 port
concept

FunctionConnector The FunctionConnector connects a
pair of FunctionFlowPorts with
matching types and opposite
directions or a pair of
FunctionClientSeverPorts, with
matching
FunctionClientServerInterfaces and
opposite directions

Connector None: uses the plain
UML2 Connector.

AnalysisFunctionPrototype A concrete FunctionPrototype to
model the internal structure of a
composite AnalysisFunctionType at
Analysis level. It is typed by an
AnalysisFunctionType.

Part None: uses the plain
UML2 part concept. An
AnalysisFunctionPrototype
will be represented as a
property typed by an
AnalysisFunctionType.

AnalysisFunctionType A concrete FunctionType at Analysis
level, which can be decomposed with
several AnalysisFunctionPrototypes.

Class None: The stereotype
AnalysisFunctionType is
introduced.

DesignFunctionPrototype A concrete FunctionPrototype to
model the internal structure of a
composite DesignFunctionType at
Design level. It is typed by a

Part None: uses the plain
UML2 part concept. A
DesignFunctionPrototype
will be represented as a
property typed by an

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 17 (47)

DesignFunctionType. DesignFunctionType.

DesignFunctionType A concrete FunctionType at Design
level, which can be decomposed with
several DesignFunctionPrototypes.

Class None: The stereotype
DesignFunctionType is
introduced.

BasicSoftwareFunctionType A subtype of DesignFunctionType to
represent a middleware functionality
at Design level.

Class None: The stereotype
BasicSoftwareFunctionTyp
e is introduced.

HardwareFunctionType A subtype of DesignFunctionType to
represent the transfer function for the
identified HardwareComponentType
or a specification of an intended
transfer function.

Class None: The stereotype
HardwareFunctionType is
introduced.

LocalDeviceManager A subtype of DesignFunctionType to
represent the functional interface to
sensors.actuators and other devices.

Class None: The stereotype
LocalDeviceManager is
introduced.

PortGroup The PortGroup is used to collapse
several ports to one. All ports that are
part of a port group are graphically
represented as a single graphically
collapsed to a single line.

None None

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 18 (47)

4 Hardware modeling and MARTE HRM

As already pointed out, the hardware modeling constructs are organized in EAST-ADL in a single
package (in its turn sub-package of Structural Constructs). In order to find good candidates in
MARTE for the mapping of hardware modeling constructs, we should first inspect those sub-
profiles whose modeling purpose is the modeling of platform designs. Table 3 shows that three
sub-profiles pursue the platform design modeling purpose, i.e. SRM, HRM and GRM. SRM,
however, is not relevant in the context of EAST-ADL as it used to model real-time operating
systems. GRM is more general and does not distinguish from software and hardware resource.
For this reason, we will select only HRM for the mapping of hardware modeling constructs and we
will explore GRM only for its possible specialization towards EAST-ADL.

4.1 HRM in a nutshell

The hardware resource modelling sub-profile provides constructs to describe the structure of
hardware platforms. The Deployment package of UML specifies constructs like DeploymentTarget,
Node, or Device, which can be used to define roughly a hardware architecture that is to serve as
the target of software artifacts. MARTE scope is larger, as MARTE aims at covering many aspects
such as:

 Software design and allocation using a high level hardware description model of the
targeted hardware architecture, with some details about available resources, instruction
set family, memory size. Such model is a formal alternative to block diagrams.

 Analysis and simulation of a specialized hardware description model. Let us note that the
nature of details depends on the analysis focus and the simulated resources. For
example, schedulability analysis requires details on the processor throughput, memory
organization, and communication bandwidth; whereas, power analysis will focus on power
consumption, heat dissipation, and the layout of the hardware components. Beside the
nature of models (targeting schedulability or power consumption analysis), their level of
details depends on the analysis and simulation accuracy. The performance simulation
needs a fine description of the processor micro-architecture and memory timings;
whereas, many functional simulators simply require entering the instruction set family.

As shown in Figure 10, the Hardware Resource Model is composed of two views: a logical view
that classifies hardware resources depending on their functional properties, and a physical view
that concentrates on their physical properties.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 19 (47)

Figure 10 Hardware Resource Model profile structure

More in details,

The objective of the logical modeling is to provide a functional classification of hardware entities,
whether they are computing, storage, communication, timing, or device resources. Such a

classification is mainly based on services that each resource offers and optionally influenced by
the resources nature. Figure 11, Figure 12,

 Figure 13 present respectively profile details for computing, communication resources and
devices.

1. HwComputing profile defines a set of active processing resources that are central to
execution platforms (Figure 11). HwComputingResource is a generic resource. It could
be specialized (HwASIC), such resources are known to be efficient but not flexible. It
could be configurable (HwPLD), there are many technologies that have different
capabilities like dynamic reconfiguration (SRAM). And it could be programmable
(HwProcessor), which typically implements some instruction sets, owns caches,
corresponding memory management units, and adopts branch prediction policies.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 20 (47)

Figure 11 HwComputing profile details

2. HwCommunication profile groups all communication participants within a functional
taxonomy (Figure 12). The HwMedia is a central concept that denotes a communication
resource able to transfer data with a theoretical bandwidth. It may link many
HwEndPoint(s). It could be controlled by many HwArbiters and it may be connected to
other HwMedias by means of HwBridges. An HwEndPoint is an identified connection
point of an HwResource (e.g., pin, port, or slot). If HwMedia is generic and symbolizes
any kind of connections, HwBus is a particular wired channel with specific functional
properties.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 21 (47)

Figure 12 HwCommunication profile Details

3. HwDevice profile groups auxiliary resources that are not as fundamental as computing,
storage,and communication resources are, but they expand the functionality of the
hardware. It has two subcategories as shown in

4. Figure 13. The HwI/O denotes resources that interact with the environment, like
sensors, actuators, peripherals, displays, external port, and so on (these specializations
are not shown in the figure). Whereas, the HwSupport is a support resource like power
suppliers (batteries), power regulators, cooling fans, or miscellaneous electronic
devices. Because of their nature, some support devices are detailed in the physical
model.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 22 (47)

Figure 13 HwDevice profile details

 The objective of physical modeling is to represent hardware resources as physical
components with details on their shape, size, position (within platform), power consumption,
heat dissipation, and many other physical properties. It is organized in two sub- profiles (see
Figure 14 and Figure 15):

1. HwLayout provides mechanisms to make UML graphical diagrams as close as possible
to the real hardware platform layout. It classifies hardware components depending on
their forms and offers arrangement constructs using rectilinear grids. HwComponent
denotes a generic physical component that can be refined into a grid of
subcomponents. It has dimensions, a resulting area, a particular weight, and optionally
a number of pins and a position within a potential container. Each HWComponent
requires some environmental conditions whether if it is in use or not.

Figure 14 HwLayout profile details

2. HwPower comes with a detailed description of HwComponent power consumption and
heat dissipation. It enables advanced power analysis and autonomy optimization that
are crucial for embedded systems. Notice that the HwLayout may also influence the
power analysis. HwResourceService is a key stereotype that provides instantaneous
power descriptions: consumption and leakage at non-operating time. HwPowerSupply
is an energy suppliers, whereas HwCoolingSupply is a heat reducer.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 23 (47)

3.

Figure 15 HwPower profile details

4.2 Hardware Modeling in a nutshell

Figure 16 shows the organization of hardware modeling concepts in EAST-ADL. These concepts
allow the hardware to be captured in sufficient detail to allow preliminary allocation decisions.

Figure 16 Hardware Modelling

4.3 HRM and Hardware modeling comparison

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 24 (47)

Common objectives have led to the definition of hardware modeling constructs in MARTE and
EAST-ADL. However, MARTE comes with a lower level of detail and presents a different
organization of concepts. Concepts are in fact separated in the logical and physical view, while the
two views are not separated in EAST-ADL. For instance, the logical bus and the hardware
connector are put together in the same EAST-ADL Hardware Modelling package, while
representing a logical and physical element, respectively. In MARTE, communication media
represents a logical bus in the logical view; while a connector connecting HwComponents
represent a physical connector in the physical view. A different example is represented by the
HardwareComponentType that in EAST-ADL can be viewed as a logical and physical component
at the same time. In MARTE HwComponent is only used for physical representations and can be
used to capture the physical aspect of the hardware component. Note that HwComponent is
further specialized in MARTE to represent HwPowerSupply, as in EAST-ADL the
HardwareComponentType is specialized to PowerSupply.

A MARTE concept for mapping HardwareComponentType in its logical flavor could be
HwResource that is in fact further specialized to represent computing, communication and device
resources as in EAST-ADL HardwareComponentType is further specialized to represent Node,
Sensor and Actuators.

Even if similarities can be found between the above mentioned concepts, it is very difficult to
obtain a perfect mapping between EAST-ADL concepts and MARTE HRM ones. The two
packages follow very different designs resulting in not only different (but maybe similar) concepts
but a very different characterization of these concepts in terms of properties and their relations.
Just to make an example, let us take the HwResource stereotype from MARTE. As already said it
seems similar to the logical aspect of HardwareComponentType. Nonetheless, let us have a look
at the HardwareResource properties in terms of generalization, associations and attributes:

HwResource (from HwLogical)

Generalizations • MARTE::GRM::Resource

Associations

• ownedHW: HwResource[0..*] Specifies the owned sub-HwResources. Subsets Resource.ownedElement.

 • p_HW_Services: HwResourceService[0..*] Specifies the provided services. Subsets Resource.pServices.

 • r_HW_Services: HwResourceService[0..*] Specifies the required services.

• endPoints: HwEndPoint[0..*] Specifies the connection points of the HwReource. Subsets ownedHW

Attributes

• description: NFP_String Specifies a textual description of the HwResource.

• frequency: NFP_Frequency[0..1] Specifies the clock frequency of the HwResource

Now let us focus on the ‘frequency’ attribute. This attribute will be inherited in MARTE by all the
stereotypes specializing HwResource, i.e. computation, communication and devices, including
sensors and actuators. Note that in EAST-ADL, even if this ‘frequency’ is conceptually equivalent
to ‘executionRate’ of Node, no executionRate is present in Sensors and Actuators, which are a
little more abstract than the MARTE counterparts of sensors and actuators (both specializations of
HwI/O in HwDevice).

4.4 Hardware Modeling specialization (profile) of plain UML

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 25 (47)

As already pointed out, to obtain EAST-ADL elements as specialization of MARTE concepts, those
MARTE concepts must be enough general to be specialized without violating the EAST-ADL
specification, e.g. by introducing an attribute not present in the EAST-ADL specification.

In general, HRM stereotypes result ‘too’ specialized to be used as generalization of the Hardware
Modelling constructs of EAST-ADL. To address this problem we need then to resort to plain UML
while inspecting the MARTE Generic Resource Modelling (GRM) package to see if some concept
can be used for specialization. GRM in fact provides very abstract resources only characterized by
the service they provide, disregarding if this service will be implemented in software or hardware.
Figure 17 shows an example of platform architecture at GRM level, where vey high-level resources
are represented. At a first look the GRM stereotypes ComputingResource, CommunicationMedia
and DeviceResource seem better suited to be further specialized in the EAST-ADL constructs
Node (from ComputingResource), LogicalBus (from Communication Media), Sensor and Actuator
(from DeviceResource). However, GRM profile details (see Figure 18) show that all these MARTE
stereotypes inherits from <<Resource>> that has three attributes (result, isProtected, isActive) not
present in EAST-ADL Node, Sensor, Actuator and LogicalBus.

<<ComputingResource>>

{processingRate=1.0}

NT_Station

<<ComputingResource>>

{processingRate=0.6}

Controller
CAN_Bus

<<Device>>

{processingRate=1.0}

Robot Arm

VME_Bus

<<CommunicationMedia>>

{processingRate=1.0}

<<CommunicationMedia>>

{processingRate=8.5}

<<Storage>>

{elementSize=1024x1024x8,

maxRI=256}

Figure 17 example of usage of GRM

The logical consequence of this fact is that for the specialization we need to resort to plain UML
only (as it can be observed the resource stereotype inherits directly from UML), as shown in the
next table.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 26 (47)

Figure 18 GRM profile details

EAST-ADL concept Description UML

concept

MARTE stereotype

HardwareComponentType It is the equivalent of a
FunctionType for the Hardware
level. It can be decomposed using
several
HardwareComponentPrototype and
feature a set of connectors, ports
(called pins at hardware level) and
buses. Concrete subtypes are
Nodes, Sensors, Actuators,
PowerSupplies

Class None. The
HardwareComponentType
stereotype is introduced by
inheriting from Class

HardwareComponentPrototype It is the equivalent of a
FunctionPrototype for the Hardware
level. It is typed by a
HardwareComponentType.

Property None: The
HArdwareComopnentProtot
ype is introduced by
inheriting from Property

HardwarePin It is the equivalent of a FunctionPort
for the Hardware level. Concrete

Port None. The HardwarePin
stereotype is introduced

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 27 (47)

subtypes are IOHardwarepin,
CommunicationHardwarepin,
PowerHardwarePin. They feature a
HardwarePinDirectionKind (in,
inout, out) which is the equivalent of
the EADirectionKind at functional
level

inheriting from Port

CommunicationHardwarePin The CommunicationHardwarePin
represents the hardware connection
point of a communication bus.

Port None: the stereotype
CommunicationHardwarePi
n is introduced inheriting
from Port

IOHardwarePin The IOHardwarePin represents an
electrical pin or connection point. It
features an IOHardwarePinKind
(analog, digital, pwm – pulse width
modulated, other)

Port None: the stereotype
IOHardwarePin is
introduced inheriting from
Port

PowerHardwarePin A PowerHardwarePin is primarily
intended to be a power supply. The
direction attribute of the pin defines
whether it is providing or consuming
energy.

Port None: the stereotype
PowerHardwarePin is
introduced inheriting from
Port

HardwareConnector It is the equivalent of a
FunctionConnector for the
Hardware level.

Connector None. The stereotype
HardwareConnector is
introduced inheriting from
Connector

Node Node represents the computer
nodes of the embedded
electrical/electronic system. Nodes
consist of processor(s) and may be
connected to sensors, actuators
and other ECUs via a
BusConnector. Node denotes an
electronic control unit that acts as a
computing element executing
Functions. In case a single CPU-
single core ECU is represented, it is
sufficient to have a single, non-
hierarchical Node. They are
characterized by an executionRate
as float, which is the ratio compared
to nominal execution (i.e. a 25%
faster CPU would have an
executionRate of 1.25),
volatileMemory and
nonVolatileMemory size in bytes

Class None. The stereotype Node
is introduced inheriting from
Class

Sensor A concrete
HardwareComponentType
representing a Sensor

Class None. The stereotype
Sensor is introduced
inheriting from Class

Actuator The Actuator is the element that
represents electrical actuators,
such as valves, motors, lamps,
brake units, etc. Non electrical
actuators fall outside the hardware
modeling: they are part of the plant
model

Class None. The stereotype
Actuator is introduced
inheriting from Class

PowerSupply PowerSupply denotes a power
source that may be active (e.g., a
battery) or passive (main relay). A
boolean isActive indicates whether
the source is active or passive.

Class None. The stereotype
PowerSupply is introduced
inheriting from Class

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 28 (47)

LogicalBus The LogicalBus represents logical
communication channels. It serves
as an allocation target for
connectors, i.e. the data exchanged
between functions in the
FunctionalDesignArchitecture. It
features a busSpeed as a float,
which is in bits per second. Used to
assess communication delay and
schedulability on the bus. Note that
scheduling details are not
represented in the model. A
LogicalBusKind describeds the type
of bus scheduling assumed
(EventTriggered, TimeTriggered,
TimeandEventTriggered, other)

Class None. The stereotype
LogicalBus is introduced
inheriting from Class

HardwarePinGroup Equivalent of PortGroup for the
Hardware level

Port and Class None. The stereotype
HardwarePinGroup is
introduced inheriting from
Class and Port

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 29 (47)

5 Allocation modeling in EAST-ADL and MARTE

Allocation modeling provides concepts for the allocation of platform-independent elements to
platform resources in both languages. MARTE Allocation (Alloc) is the sub-profile dedicated to
allocation modeling, while EAST-ADL provide allocation constructs in FunctionModeling and
HardwareModeling

5.1 Alloc in a Nutshell

A MARTE allocation is an association between a MARTE application and a MARTE execution
platform. Application elements may be any UML element suitable for modeling an application, with
structural and behavioral aspects. An execution platform is represented as a set of connected
resources, where each resource provides services to support the execution of the application. So
resources are basically structural elements, while services are rather behavioral elements. Note
that the MARTE allocation does not use the UML notion of Deployment. MARTE specification is
indeed close to SysML approach, where allocation though relating a functional to execution
platform mapping, allows that the execution platform is still in an abstract form.

The first step is to identify what can be allocated, the logical view (behavior or structure), and what
can serve as a target of an allocation, the physical view (a resource or a service). The stereotype
Allocated (Figure 19) is used for this matter

Figure 19 Allocated Stereotype

The second step is to identify what is allocated onto what and what are the reasons for such an
allocation and what are the constraints implied by this allocation, hence the definition of the
stereotype Allocate (Figure 20). Note that allocation can be specified in different kinds: structural,
behavioral, or hybrid. Structural allocation is an association between a group of structural elements
and a group of resources. Behavioral allocation is an association between a set of behavioral
elements and a service provided by the execution platform. When clear from context, hybrid
allocations can also be allowed (for instance when an implicit service is uniquely defined for a
resource). At the finer level of detail, behavioral allocation deals with the mapping of UML actions
to resources and services. Allocation can also have different nature: it results in both spatial
distribution and temporal scheduling. Spatial distribution is the allocation of computations to
processing elements, of data to memories, and of data/control dependencies to communication
resources. Scheduling is the temporal/behavioral ordering of the activities (computations, data
storage movements or communication) allocated to each resource. Scheduling is represented as a
relation between the respective time bases of application and platform elements.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 30 (47)

Figure 20 Allocate Stereotype

Alternately an allocation can be specified using the Assign stereotype. The Assign stereotype
extends a UML metaclass: Comment with neutral semantics (instead of leveraging the semantics
of Abstraction). It defines “from” / “to” attributes to indicate the ends of the assignment. Like an
allocation, an assignment can be characterized by its “nature” (spatial or time distribution) and its
“kind” (structural, behavioral, or hybrid). The optional body property of the Comment meta-class
can be used to provide the justification of the assignment.

Figure 21 Assign Stereotype

5.2 Allocation constructs in EAST-ADL

In EAST-ADL concepts for modeling allocation are spread over FunctionalModelling and
HardwareModelling. More in detail, Allocateable, FunctionalAllocation, Allocation belong to
FunctionalModeling, while AllocationTarget belongs to HardwareModelling. FunctionAllocation
establishes allocations between elements using an instanceRef mechanism. InstanceRef allows
linking two allocatable elements and allocation targets explicitly using a particular context. To
make an example let us consider the case of two vehicles vehicle1 and vehicle2, both of a
common type Vehicle that is made of four wheels: frontleftwheel, frontrightwheel, rearleftwheel,

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 31 (47)

rearrightwheel. Let us consider now the case that we want to allocate a particular sensing function
s1 to the front left wheel of vehicle 1 while another sensing function s2 must be allocated to
frontleftwheel of vehicle2. Note that the target in both cases is the frontleftwheel prototype part of
the Vehicle type. Thus, to distinguish between the two cases an explicit context must be
represented for each case. The context will be of the form {vehicle1} for the AllocationTarget of S1
and of the form {vehicle2} for the AllocationTarget of s2.

Figure 22 EAST-ADL allocation constructs

5.3 Alloc and EAST-ADL Allocation comparison

While both languages provide constructs for allocation modeling, many differences can be found.
First of all in MARTE each element the user wants to allocate must be marked with an
<<allocated>> stereotype. Note that every NamedElement can be potentially used in allocations. It
is always the user that must specify if the <<allocated>> element is an application or execution
platform element (see Figure 19). Note in MARTE allocations are very flexible as they are not
restricted to be vertical (from an application to an execution platform element).

In EAST-ADL, allocation can only be established between FunctionalModelling elements and
HardwareModelling elements (see Figure 22). As already discussed allocations use in EAST-ADL
the instanceRef mechanism, which is not supported by MARTE allocations.

Another point is about the EAST-ADL allocation concept that owns a number of functional
allocations. As MARTE <<allocate>> stereotype specializes UML abstraction, and it is not possible
for an Abstraction to contain other elements, the two concepts cannot be mapped. Moreover, it is
also impossible to map the EAST-ADL functionalAllocation concept to MARTE <<allocate>> since
abstractions can only be contained in UML Packages, while functionalAllocation cannot be
contained in a package.

To overcome these problems, EAST-ADL functional allocation could be mapped to the
<<assign>> stereotype, where EAST-ADL allocation will map to a new stereotype <<allocation>>
specializing UML Class. Functional allocation will be owned by the class that contains the UML
Comment stereotyped <<FunctionalAlocation>>. Even if functionalAllocation may conceptually

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 32 (47)

map to the <<assign>> stereotype, the <<assign>> stereotype cannot be used to derive the
functionalAllocation stereotype has the ‘kind’ and ‘nature’ attribute will appear.

5.4 EAST-ADL Allocation constructs as specialization (profile) of plain UML

From the considerations made at the end of the previous section, it is again the case in which
concepts found in MARTE for allocation are not well-suited to be specialized in EAST-ADL ones.

The following table shows a plain UML specialization for EAST-ADL allocation language
constructs.

EAST-ADL concept Description UML

concept

MARTE stereotype

AllocateableElement The AllocateableElement abstracts all
elements that are allocateable.

NamedElement None, a new stereotype
AllocatableElement is
introduced by specializing
NamedElement

AllocationTarget An abstract concept representing the
potential target of an allocation.

NamedElement None, a new stereotype
AllocatableElement is
introduced by specializing
NamedElement

FunctionAllocation FunctionAllocation represents an
allocation constraint binding an
AllocateableElement (computation
functions or communication
connectors) on an AllocationTarget
(computation or communication
resource). It uses the inst

Comment None, a new sterotype
FunctionAllocation is
introduced by specializing
Comment

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 33 (47)

6 Generic Constraints and MARTE NFPs

This section discusses relationships between the Generic Constraints package and MARTE Non-
Functional Properties (NFPs).

6.1 NFPs in a nutshell

MARTE modeling of non-functional properties provides detailed non-functional properties
descriptions able to represent: system properties, constraints and relationships among them.

Three main stereotypes are defined for this purpose as shown in Figure 23 : Nfp (non-functional
property), Nfptype, NfpConstraint, and Unit.

MARTE offers as well a predefined library of Units and NfpTypes as Power, Frequency, DataSize,
DataTxRate, Duration, BoundDuration, etc. Figure 24 shows the library. Note that each Nfttype
inherits from a NFPCommonType that has the following attributes:

 expr :VSL_Expression. It is a placeholder for mathematical expressions in addition to the
actual value.

 source : SourceKind[0..1]. It specifies the origin of the specification (estimated, calculated,
required and measured).

 staQ :StatisticalQualifierKind[0.. 1]. It specifies the type of statistical measure of a given
property (maximum, minimum, mean, percentile, distribution).

 dir:DirectionKind[0..1]. It defines the type of the quality order relation (increasing or
decreasing) in the value domain of nfp type. This allows multiple instances of nfp values to be
compared with the relation ‘higher-quality-then’ in order to indentify what values represents the
higher quality or importance.

Figure 23 NFP profile details

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 34 (47)

Figure 24 Nfp Type Library

Figure 25 shows and compare the use of nfps against plain UML. More in details the NFPs
counterpart of the UML CAN_Bus shows a number of attributes typed by NFPs types (NFP_Real,
NFP_DataTxRate, NFP_Duration) instead of UML primitive types (Real, Integer,Real). This allows
describing rich expressions for speedFactor, capacity and packetIT as shown in the MARTE
can1:CAN_Bus.

Figure 25 NFPs usage example

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 35 (47)

6.2 Generic Constraints in a nutshell

Generic constraint denotes a property, a requirement or a validation result. It is a requirement if it
refines a Requirement, it is a validation result if it realizes a VVActualOutcome (see Section 7).
Figure 26 shows the GenericConstraint package. Note that some kind of constraints are pre-
defined (GenericConstraintKind enumeration) and that a value of the generic constraint is always
of type String.

Figure 26 Generic Constraint package

6.3 NFPs and Generic Constraints comparison

The way in which the two languages support the description of non-functional properties is very
different. In EAST-ADL non-functional properties are expressed through constraints. The package
GenericConstraint offers a way of defines user-constraints, but a set of pre-defined constraints
there exists not included in the Generic Constraint package. For instance timing constraints,
included in the Timing package, denote a set of non-functional properties capturing timing aspects
as execution time constraints or delays constraints. Note that these constraints represented
measured/computed properties when attached to a VVactualOutcome. Besides constraints some
non-functional properties as power, bus speed, execution rate, can be found as attributes of type
Float belonging to hardware modeling elements.

With respect to MARTE, EAST-ADL presents a non-homogenous way of modeling NFPs, as some
non-functional properties with Float values are already present in the characterization of hardware
elements, some constraints are present in the Timing package, while the general mechanism to
enrich elements with non-functional properties offers only the possibility of attaching non-functional
properties with string values. Note that in MARTE the NFPs sub-profile offers a powerful and
extendible framework to express complex NFP types, which enjoy a set of useful qualifiers and
VSL expressions.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 36 (47)

6.4 Generic Constraints as specialization (profile) of plain UML

As pointed out in the previous section, the Generic Constraint package shares with NFPs sub-
profile of MARTE the objective of enriching model element with annotations for non-functional
properties, but besides that, NFPs offers a richer framework than Generic Constraint package
does. For this reason, Generic Constraint package elements can be obtained only through
specialization of plain UML as the following table shows.

EAST-ADL concept Description UML

concept

MARTE stereotype

GenericConstraint Generic constraint denotes a
property, a requirement or a
validation result

Class None, a new stereotype
GenericConstraint is
introduced by extending
Class

GenericConstraintSet Collection of generic constraints Package None, a new stereotype
GenericConstraintSet is
introduced by extending
Package

TakeRateConstraint Defines the ratio between the number
of configurations that includes the
target elements and the number of
configurations that include the source

 None, a new stereotype
TakeRateConstraint is
introduced by specializing
the stereotype
GenericConstraint

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 37 (47)

7 Verification and Validation and MARTE GQAM

As already pointed out, the verification and validation (v/v) modeling constructs are organized in
EAST-ADL in a single package. In order to find good candidates in MARTE for the mapping of v/v
modeling constructs, we should first inspect those sub-profiles whose modeling purpose is the
verification and validation of designs. Table 3 shows that three sub-profiles pursue v/v purposes,
i.e. GQAM, SAM and PAM. SAM and PAM, however, are not relevant in the context of EAST-ADL
as they are used to carry out schedulability analysis and performance analysis of logical designs
mapped into real-time operating systems, which is out of the EAST-ADL scope. GQAM, however,
is more general than SAM and PAM, as it provides a genral framework for system analysis,
without targeting a particular analysis yet. For this reason, we will select GQAM for the mapping of
v/v constructs.

7.1 GQAM in a nutshell

The Generic Quantitative Analysis Modelling (GQAM) sub-profile supports predictive or model-
based quantitative analysis to detect potentially unfeasible real-time architectures and/or
implementations before the realization phase and to validate non functional requirements on the
final system. GQAM supports as well architectural exploration and sensitivity analysis, to explore
different architecture alternatives. At the heart of GQAM resides the ‘AnalysisContext’ concept
(Figure 27), which defines the context for the analysis: the logical application, workload for the
analysis, the target platform and the parameters for the analysis, e.g. optimization criteria,
constraints.

Figure 27 AnalysisContext details

More in detail, a workload is composed by behavior scenarios: selected runs for the
applications (particular chains of function activations), stressed by a workload event (a set of
stimuli). The behavior scenarios selected for the analysis are modeled as a sequence of atomic
steps, with a start and a finish time. These steps are characterized by a set of non-functional

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 38 (47)

properties as host demand, throughput, response time, utilization, etc. Note that these properties
can be input for the analysis or outputs from the analysis (Figure 28).

Figure 28 Workload details

7.2 Verification and Validation in a nutshell

The Verification and Validation package of EAST-ADL does not target a particular analysis,
method or verification and validation activity, because at EAST-ADL level many different
verification and validation (v/v) techniques, methods and tools can be applied. The goal is to
provide instead means for planning, organizing and describing v/v activities and to define the links
between v/v activities, the satisfied and verified requirements and the objects modeling the
system. Information that is specific to an individual technique is not described in EAST-ADL but a
place for storing this information is provided. The most important language constructs (shown in
Figure 29) are:

 VVCase. It represents a v/v effort

 VVProcedure. It represents a task in a v/v effort

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 39 (47)

 VVTarget. It represents a testing environment in which a v/v effort is performed

 VVLog. It represents the execution of a v/v effort

 VVActualOutcome. It represents the actual outcome of a performed v/v effort

 VVIntendedOutcome. It represents the expected outcome of a v/v effort

 VVStimuli. It represents input values for a VVProcedure

Figure 29 Verification and Validation package details

7.3 GQAM and Verification and Validation comparison

The EAST-ADL Verification and Validation package is at higher-level of abstraction than the
GQAM level. Nicely, GQAM concepts can be viewed as refinements of EAST-ADL ones. For
instance, let us take the case of the VVStimuli in EAST-ADL. In this case the GQAM
WorkloadEvent stereotype can be viewed as a refinement of VVStimuli in which the stimuli is a
stream of triggering occurrences. The stream may be generated by a Timed Event, have a stated
arrival pattern, may have a generator (e.g. state machine) or generated by a trace stored in a file.
In the same line, VVTarget could be refined by the WorkloadBehavior stereotype. In this case the
VVTarget is a set of selected critical activation paths subjected to the stimuli.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 40 (47)

7.4 Verification and Validation as specialization (profile) of plain UML

Since the Verification and Validation package is at higher abstraction level than the GQAM
package, once again we need to resort to plain UML to define EAST-ADL verification/validation
constructs.

EAST-ADL concept UML concept MARTE

stereotype

VVCase Class None, a new
stereotype VVCase is
introduced by
extending Class

VVTarget Class None, a new
stereotype VVTarget is
introduced by
extending Class

VVIntendedOutcome Class None, a new
stereotype
VVIntendedOutcome is
introduced by
extending Class

VVStimuli Class None, a new
stereotype VVStimuli is
introduced by
extending Class

VVProcedure Class None, a new
stereotype
VVProcedure is
introduced by
extending Class

VVActualOutcome Class None, a new
stereotype
VVActualOutcome is
introduced by
extending Class

VVLog Class None, a new
stereotype VVLog is
introduced by
extending Class

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 41 (47)

8 Timing Modeling and MARTE Time

As already pointed out, the timing modeling constructs are organized in EAST-ADL in a single
package, called Timing, which includes Timing, Timing Constraints and Events. Good candidates
in MARTE for the mapping of timing modeling constructs can be found in the Time (sub-) profile.
In the following main concepts from MARTE Time and the MARTE profile for EAST-ADL Timing
are presented.

8.1 MARTE Time in a nutshell

MARTE Time describes a general framework for representing time and time-related concepts and
mechanisms that are appropriate for modeling real-time and embedded systems.

At the heart of the time modeling resides the concept of time structure. A time structure is defined
by a time base, in basic timing models, and by time structure relations in multiple timing models. A
timing base can be discrete or dense and it is a container of instants.

The access to time is via clocks. A clock is related to a time base. Clocks can be logical or
physical. Any clock can be associated to model elements, making the model element a timed
element as shown in Figure 30.

Figure 30 Clocks and Timed Elements

More in details by associating a clock to behavioral elements, we obtain TimedEvent(s), and
TimedProcessing (s). The association of a clock to a constraint, results in a TimedConstraint,
while the association of a clock to a Data Type (or Value) results in a TimedValue.

A timed event (shown in Figure 31) specifies event whose occurrences are bound to a single clock

A timed processing (shown in Figure 32) represents executions that have known start and finish
times OR a known duration.

A TimedConstraint (Figure 33) imposes constraints on either instant value or duration value
associated with model elements bound to clocks.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 42 (47)

Figure 31 TimedEvent

Figure 32 UML profile for TimedProcessing

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 43 (47)

Figure 33 Timed constraint

8.2 The MARTE (Time) Profile for EAST-ADL Timing Modeling

In this section we review the EAST-ADL constructs used to model timing aspects and how these
concepts are specialized from MARTE stereotypes.

EAST-ADL concept Description UML

concept

MARTE stereotype

Event An Event represents a distinct form
of state change in a running
system, occurring at different time
instants – in this case the
Event.isStateChanged is set to true.
Or it is a periodical report of the
current state of the system (the
same Boolean property is false). It
is assumed one can observe such
events and tell the time instants at
which they occur. An Event can
either be a stimulus, which causes
another Event or a response to
another Event. These roles are
assigned in EventChains.

Event

The UML Event metaclass
is extended and the EAST-
ADL property
isStateChange shall be
added to this extension.

EventFunction An event of a Function refers to the
triggering of the Function, i.e., when
the input data is consumed, data
transformation is performed on that
input data by the function, and
output data is produced.

Class Specializes by inheritance
from TimedElement with
additional EAST-ADL
properties: functionType
and functionPrototype

Note that the most similar
concept in MARTE is
TimedEvent, but
TimedEvent enjoys the
‘repetition’ and the
‘isRelative’ which are
absent in EventFunction.

EventFunctionFlowPort Event that refers to the triggering of
the Function at a flow port, i.e.,
when data is sent or received.

Class Specializes by inheritance
from TimedElement with
additional EAST-ADL
property: port

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 44 (47)

EventFunctionClientServerPort Event that refers to the triggering of
the Function at a client/server port,
i.e., when the input data is sent /
received, or when the output data is
produced / received.

Class Specializes by inheritance
from TimedElement with
additional EAST-ADL
properties: port and
eventKind

EventChain EventChains depict temporal
sequences of Events occurring in
response or causing other Events.
Constraints may be attached to
such chains. EventChains can refer
to other EventChains: the referred
chains refine the top chain, either
as an ordered sequence (they are
referred as segments) or parallel
chains (they are referred as
strands).

Class Specializes by inheritance
TimedElement stereotype
and adds EAST-ADL
properties: stimulus and
response

Note that the most similar
concept is
TimedProcessing
stereotype which includes
start and finish that could
correspond to stimulus
and response of
EventChain

TimingConstraint TimingConstraint regroups a lower
and upper TimeDuration, which
serve as bounds to a certain Event
or EvenChain. The link to Events or
EventChains is managed by a
Timing construct (see this). The
bounds can be either requirements,
or a validation result or an intended
validation result, depending on what
the TimingConstraint refines, resp.
a Requirement, a
VVActualOutcome or a
VVIntendedOutcom (through a
Refine relationship). A mode
property specify the modes in which
the constraint is valid. Concrete
subconstructs are
ExecutionTimeConstraint,
PrecedenceConstraint or various
subtypes, which define specific time
responses (DelayConstraints) or
event models (EventConstraints).

Class,
Constraint

Specializes by inheritance
TimedConstraint
stereotype and adds
EAST-ADL properties:
upper and lower

Timing Regroups and links
TimingConstraints to either Events
or EventChains (both are
TimingDescriptions).

Class, Package None

TimeDuration Defines a duration value as a Float,
a code (cseCode) provides an
integer value which defines either
the time unit (ms, etc.) or angular or
combustion step. See specification
for a detailed explanation.

DataType Specializes by inheritance
TimedValueType
stereotype

ExecutionTimeConstraint ExecutionTimeConstraint expresses
the execution time of a function
under the assumption of a nominal
CPU that executes 1 "function
second" per second. Function
allocation will decide the actual
execution time by multiplication with
the relative speed of the host CPU.
The function is activated by a time
trigger or a port trigger. The function
starts execution some time after
activation, depending on e.g.
interference and blocking from
other functions on the same

Class,
Constraint

Specializes by inheritance
EAST-ADL
TimingConstraint
stereotype. Added EAST-
ADL properties are:
designFunctionType,
designPrototype, variation

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 45 (47)

resource. Immediately on start, the
function reads input data on all
ports. Functions write data at the
latest when the execution time has
elapsed (which is after the
execution time plus any blocking
and interference time). A variation
property (TimeDuration) defines the
allowed variation between worst
and best execution time. The target
of this constraint is either a
DesignFunctionType or a
DesignFucntionPrototype

PrecedenceConstraint The PrecedenceConstraint
represents a particular constraint
applied on the execution sequence
of functions, such that all
predecessors have completed
before the successors are started.
FunctionPrototypes are referred to,
paths enable to reference particular
function prototypes in the context of
a composite.

Note: without a precedence relation,
Functions are executed according
to their data dependencies, if these
are uni-directional. For bi-directional
data dependencies, execution order
is not defined unless the
PrecedenceDependency
relationship is used.

Class,
Constraint,

Dependency

Specializes by inheritance
EAST-ADL
TimingConstraint
stereotype. Added EAST-
ADL properties are:
successive and
preceeding
FunctionPrototypes.

DelayConstraint The DelayConstraint provides
additional parameters to define a
bound, aside from the upper and
lower values inherited from
TimingConstraints. The additional
properties are jitter and nominal.
Variation around the nominal value
can be expressed by means of an
upper and lower bound, or by
means of a jitter value. For
example, [lower=10, upper=20,
nominal=15] is equal to
[nominal=15, jitter=10]. A scope
property refers to the EventChain
on which the constraint is applied.

Class,
Constraint

Specializes by inheritance
EAST-ADL
TimingConstraint
stereotype. Added EAST-
ADL properties are: scope
event chain, nominal time
duration and jitter.

ReactionConstraint ReactionConstraint is used to
impose a timing constraint on an
event chain in order to specify
bounds for reacting on the
occurrence of a stimulus or stimuli.
The intention of this constraint is to
look forward in time.

Class,
Constraint

Specializes by inheritance
EAST-ADL
DelayConstraint
stereotype.

AgeConstraint In case of over- or undersampling, a
one-to-one relation is not possible
between the occurrences of stimuli
and responses of the associated
event chain. Thus, the age
constraint defines the semantic of
which delay must be constrained.

Class,
Constraint

Specializes by inheritance
EAST-ADL
DelayConstraint
stereotype.

OutputSynchronizationConstrai
nt

OutputSynchronizationConstraint
expresses a timing constraint on the
output synchronization among the
set of response events.

Class,
Constraint

Specializes by inheritance
EAST-ADL
DelayConstraint
stereotype. Added EAST-

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 46 (47)

ADL property is: width
(time duration).

InputSynchronizationConstraint InputSynchronizationConstraint
expresses a timing constraint on the
input synchronization among the set
of stimulus events.

Class,
Constraint

Specializes by inheritance
EAST-ADL
DelayConstraint
stereotype. Added EAST-
ADL property is: width
(time duration)

EventConstraint The EventConstraint describes the
basic characteristics of the way an
event occurs over time. In addition
an event model may specify an
offset, which delays the start of the
first period - the occurrence of the
very first event - by the given
amount of time.

Class,
Constraint

Specializes by inheritance
EAST-ADL
TimingConstraint
stereotype. Added EAST-
ADL properties are: event
and offset.

ArbitraryEventConstraint The ArbitraryEventConstraint
describes whether an event occurs
occasionally, singly, irregularly or
randomly.

Class,
Constraint

Specializes by inheritance
EAST-ADL
EventConstraint
stereotype. Added EAST-
ADL properties are:
minArrivalTime and
maxArrivalTime.

PatternEventConstraint PatternEventConstraint describes
that an event occurs following a
known pattern.

Class,
Constraint

Specializes by inheritance
EAST-ADL
EventConstraint
stereotype. Added EAST-
ADL properties are:
minimumInterraArrivalTim
e and
maximumInterraArrivalTim
e

PeriodicEventConstraint The PeriodicEventConstraint
describes that an event occurs
periodically.

Class,
Constraint

Specializes by inheritance
EAST-ADL
EventConstraint
stereotype. Added EAST-
ADL properties are:
period,
minimumInterrArrivalTime
and jitter

SporadicEventConstraint The SporadicEventConstraint
describes that an event occurs
occasionally.

Class,
Constraint

Specializes by inheritance
EAST-ADL
EventConstraint
stereotype. Added EAST-
ADL properties are:
period,
minimumInterrArrivalTime,
maximumInterrArrivalTime
and jitter

8.3 Summary

The review of core concepts has focused on functional elements, hardware elements, and the way
to allocate one on the other, verification and validation, non-functional properties modeling and
timing. A description of a MARTE profile for EAST-ADL covering the timing aspect has been
presented.

MAENAD D4.2.1 Grant Agreement 260057

 2013 The MAENAD Consortium 47 (47)

9 References

[1] ATESST2 Deliverable D4.1.1 EAST-ADL Profile Specification, June 2010.

[2] MAENAD Deliverable D5.2.1 MAENAD Analysis workbench, June 2011

[3] OMG: UML Profile for MARTE, Version 1.0, June, 2009.

[4] EAST-ADL profile specification M2.1.10, March 2012

[5] EAST-ADL specification M2.1.11, June 2013

[6] UML Profile Specification for M2.1.12 http://maenad.eu/publications.html

http://maenad.eu/publications.html

