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1 Introduction 

The introduction will look at challenges identified in the development of Automotive Embedded 
systems and how they address the following aspects of development. 

• Managing system and design complexity 

• Simplifying safety assessment and improving safety 

• Achieving successful tradeoffs between quality requirements and cost 

A background to how embedded systems have emerged and increased in complexity is presented 
as it provides a good background to what the challenges emerge from. 

1.1 Characteristics of Automotive Embedded Systems 

Automotive embedded systems have evolved enormously over the past decades. For example, the 
first commercial anti-brake locking system (ABS) of Bosch was introduced by Mercedes in 1978. 
The ABS system improves the braking performance and is today a standard feature in the 
automotive industry. The system was first presented in 1970 but at that time the available 
electronics could not cope with the ABS requirements delaying the commercial introduction by 8 
years. 

To further illustrate the dramatic introduction of computer based embedded control, consider the 
fact that a Mercedes car in 1986 contained six microprocessors; these were implemented as six 
stand-alone controllers (in the automotive industry these are referred to as ECUs, standing for 
Electronic Control Unit). In 1998 a corresponding Mercedes car contained some 60 
microprocessor systems, together forming a distributed system including four networks (not to 
mention in addition some 113 electrical motors!). 

In Engine Management Systems µCs has been used to control the engine purely by electronics. 
This was the first by-Wire system, which also triggered Safety topics. To clarify those topics the E-
GAS Arbeitskreis has been founded in (~1997). Members of the E-GAS AK are German OEMs and 
some Suppliers. 

Time table: 

• 1986: Electronic Diesel Control BMW 524td 

• 1994: SOP of the ETC70 system for BMW 850i 12 cylinder V engine 

• 1996: electronic throttle control integrated in one ECU together with EMS at GM 

• 1999: Engine management systems for VW and Audi with predecessor of torque structure 

• 1999: Torque Structure at Daimler 

The torque structure is also important from architectural view: It was one layer performing an 
overall coordination to do a consistent actuator control, here the throttle, injection and ignition. 

The torque structure was mandatory to provide an (external) torque interface, which is used for 
TCS, EDS, and ESC. 

 

The introduction of computer based embedded control has been driven both from the technical 
viewpoint, that of improving performance or introducing entirely new functions, and by market 
demands. At the same time the costs for development of electronics of which the vast part is 
software development increases dramatically, and today it is reaching about 40% of total costs 
with a tendency for further increase. 
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A typical example of an automotive embedded system is shown in Fig. 1, illustrating the electronic 
architecture of the Volvo XC90. The boxes in the figure represent Electronic Control Units (ECUs) 
and the lines represent communication networks. The intent of the figure is to show the complexity 
rather than the details. The maximum configuration contains about 40 ECUs. They are connected 
mainly by two CAN networks, one for power-train and one for body functionality. From some of the 
nodes, LIN sub networks are used to connect slave nodes into a subsystem. The other main 
structure is a MOST ring, connecting the infotainment nodes together, with a gateway to the CAN 
network for limited data exchange. The different networks illustrate the typical automotive domains, 
including vehicle dynamics control (left network, characterized by strict real-time requirements and 
safety related motion control), body electronics (including door control, climate control and 
instrument cluster), and infotainment and telematics. Through this separation, the more critical 
power-train functions on the CAN network are protected from possible disturbances from the 
infotainment system. 

The diagnostics access to the entire car is via a single connection to one ECU. The figure shows 
approximately how the ECUs are placed in various locations in the car. The partitioning of 
functionality is decided by the location of the sensors and actuators used, but also by the 
combinations of optional variants that are possible. If a vehicle is sold with only a subset of the full 
functionality, the amount of physical hardware installed should be limited to the minimum 
necessary. 

Many of the ECUs of a modern vehicle are provided by external suppliers, who work with many 
different vehicle manufacturers (or OEMs, original equipment manufacturers), providing similar 
parts. The role of the OEM is thus to provide specifications for the suppliers, so that the component 
will fit a particular vehicle, and to integrate the components into a product. Traditionally, suppliers have 
developed physical parts, but in modern vehicles they also provide software. As the computational 
power of the electronic control units (ECUs) increase, it will be more common to include software from 
several suppliers in the same nodes. 

The current development trends in automotive software call for increasing standardization of the 
software structure in the nodes. The need to integrate software from different suppliers, supporting 
dependable real-time execution, and managing changes all call for a well-defined structure. The node 
architecture (see Figure 1) includes several important parts.  

Diagnostic kernels provide an implementation of the diagnostic services that each node must 
implement to act as a client towards the off-board diagnostic tool. It relies on the communication 
software to access the networks and on the operating system to schedule diagnostic activities so 
that it does not interfere with the application functionality. Network communication software 
provides a layer between the hardware and the application software, so that communication can 
be described at a high level of abstraction in the application, regardless of the low-level 
mechanisms employed to send data between the nodes. Real-Time Operating Systems (RTOS) 
provide services for task scheduling and synchronization. 
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Figure 1 AUTOSAR basic software structure 
All these components interact with each other and with the application, and must therefore have 
standardized interfaces, and at the same time provide the required flexibility. To minimize the use 
of hardware resources, the components are configurable to only include the parts that are really 
necessary in each particular instantiation. 

For future system development, an important aspect is to create a more flexible software 
partitioning. The main use for this is probably not to find the optimal partitioning for each car on a 
given platform, since that would create too much work on the verification side, but to allow parts of 
the software to be reused from one platform to the next. This puts even higher demands on the 
node architecture, since the application must be totally independent from the hardware, through a 
standardized interface that is stable over time. Therefore, further standardization work is pursued 
within the AUTOSAR initiative [1]. 

Figure 1 shows the configurable layer of reusable software components making up the basic 
software in the AUTOSAR specification structure. The remaining parts of software in such a 
system is a ‘signal database’ layer called RTE that handles the main transfer of signals either 
between Application Software components (SW-C) that provide the functionality in such a system 
or from Basic Software (BSW) to SW-C. This structure enables the transfer of SW-C between 
ECU’s as more strict definition of interfaces is required. It also enables the possibility to evaluate 
system effects when a SW-C is moved from one ECU to another as the dependencies on BSW 
can be estimated by the medium of the data transport. 

Cars are typically manufactured in volumes in the order of millions per year. To achieve these 
volumes, and still offer the customer a wide range of choices, the products are built on platforms 
that contain common technology that has the flexibility to adapt to different kinds of vehicles. As an 
example, the Volvo XC90, which appeared in 2002, is based on the same platform as four previous 
Volvos launched since 1998. 

Automotive embedded systems are further characterized by the following: 

• Users 
In contrast to many other advanced machines, such as airplanes and medical devices, 
automotive products are utilized by all us. This has an important impact on the usability, 
service and dependability required of the products. 

• Dependability requirements 
Automotive embedded systems have a fairly long life time and users expect the vehicles to 
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function over extended periods of time, leading to strict requirements on reliability, 
availability and maintenance. Automotive control systems are safety related. Not only is the 
control system required to operate reliably; the design of the system and its context must 
be carefully analyzed to consider what might go wrong, and what the system should do in 
such cases. In addition, security is becoming of increasing importance because of the 
possibilities and relative ease with which embedded control systems behaviour can be 
modified, e.g. by replacing memories/chips or by network intrusion. 

• Heterogeneity 
As depicted by Error! Reference source not found., automotive embedded systems are 
heterogeneous. They handle many different types of tasks with widely varying 
requirements. For example, the motion control related ECUs include functionality that can 
be characterized as hybrid systems, being composed of components that are best 
described by continuous- and discrete-time dynamic systems and finite state machines. 
Motion control is one central part of ECS. Although it’s absolute size e.g. in terms of lines of 
code typically is relatively small compared to other functionality, the motion control 
functionality is coming along with real-time constraints, environment dependencies, and 
safety criticality. To handle this heterogeneity the embedded systems are normally 
structured into a system platform and applications, each with their own hierarchy in order to 
facilitate changes and reuse. Responsibilities of the system platform include for example 
logging, communication services and drivers for sensor readings. For the application there 
will be activities such as motion control, estimation of the environment state, and human 
machine communication. 

• Real-time constraints 
These constraints arise due to interactions with the environment. From control system 
specifications, for example referring to required speeds of motion, the timing requirements 
on the embedded control system can be derived. The speed (or bandwidth) of the closed 
loop system will provide requirements on the timing of the controller, including the sampling 
periods and delays that can be allowed. These properties can also be taken into account in 
the control design, however, providing an additional dependency between the controller 
and its implementation. 

• Resource constrained implementations 
Automotive embedded systems are often highly resource constrained because of the large 
series being produced. In such applications, tradeoffs between the system behaviour 
(quality of service) and the resources required (processing, memory and power) is 
essential. 

• Distributed systems 
There has over the last decades been a strong trend to connect standalone controllers by 
networks, forming distributed systems. Another and closely related trend has been 
modularization, where for example, an electronic control unit is physically integrated into an 
engine, forming a sort of mechatronic module. Combining the concepts of networks and 
mechatronic modules makes it possible to reduce both the cabling and the number of 
connectors, the result of which is facilitated production and increased reliability. Distributed 
control systems first appeared in process control, and later in the 80s in aerospace, and in 
the 90s in the automotive industry. Distributed systems are characterized by the mapping 
problem, i.e. the need to assign functions to different nodes of a distributed system, to 
define the tasks of the system, and their implementation in software and/or hardware. 

• Complex development structure 
Todays electronic systems are developed in a complex design environment. It is rare to find 
systems that are disconnected from other system in the vehicle. To some extent dynamic 
control has survived this change but for driver assistance systems the reality is that a 
system is defined at one organisational entity at the OEM but the actual development is 
done in parallel at several parts of an OEM organisation and likewise in parallel at several 
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Tier1 organisations delivering components to the vehicle builds. This puts tough 
requirements on how design decisions and requirements are organised, updated and 
distributed. To both give necessary details to all involved parties but also hide component 
related data to other component suppliers in the system. 

• Co-operative systems 
An emerging set of systems are systems where the environment or individual vehicles 
affect the behaviour of other vehicles autonomously. These systems require new methods 
to model, test, simulate and validate in order to make them reliable in a automotive 
environment. 

• Tight coupling to the environment 
The tight coupling between the control system and the controlled process is manifested in 
several ways. Apart from aspects related to physical integration and protection against a 
harsh environment, the control system is also fundamentally related to the controlled 
process. Typically, models of the environment are used in control design. In many cases, 
the control algorithms are synthesized from a validated model of the controlled system. In 
other cases, the controller parameters are tuned based on the overall system behaviour. 
For control systems this creates a dependency between the environment and the control 
system, creating a kind of contract between these two entities. Another type of environment 
coupling exists with humans interacting with the embedded control system. A driver “in the 
loop” is typical for vehicular systems. The situation arises where conflicts can occur – who 
is deciding the motion of the vehicle at any given point in time? Careful analysis is required 
and special care has to be given to the human/machine interface. 

• Parallel activities and triggering 
Since the real world is truly parallel, there is typically a need to describe and handle several 
parallel activities. A typical control system normally includes both time- and event-triggered 
activities. In many cases, time-triggering follows naturally from the development of discrete 
time (sampled data) functions. However, in other cases the controlled process can be 
inherently event-triggered. This is the case for inherently sampled systems, one example 
being control of injection in a combustion engine; the point in time of injection depends on 
the speed and angular position of the engine parts. Event triggered functions thus include 
those who are inherently sampled and other functions who are not dictated or preferably 
implemented as periodic activities. 

• Field operational tests 
To validate functions the norm is to use as many forms of testing as possible. For user 
functions one common form is to use field-test vehicles where development vehicles are 
given to external users for prolonged periods. One big problem with these trials is result 
feedback and data gathering during the trials. 

All in all, the use of embedded control systems has paved the way for large improvements of 
machinery in terms of enhanced performance, flexible tailoring of product variants, and the 
introduction of completely new functionality such as for active safety control in vehicles. As a 
consequence product complexity is becoming a crucial issue in system development. Systems 
integration is today a serious problem in the automotive industry. This increased product 
complexity calls for more mature engineering approaches including the use of model and 
component based development. 

1.2 Model based development 

It is well known that increased system complexity requires increasing abstraction levels for humans 
to deal with and develop such systems. The essence of model based development has the aim to 
provide: 

- formalized descriptions providing abilities for automated analysis and synthesis 
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- abstraction capabilities and graphical representations, facilitating communication among system 
stake-holders 

- possibility for reuse of designs, and of analysis and synthesis capabilities 

- the basis for improved solution space exploration, verification and validation 

Model based development is common practice in mature domains such as mechanical engineering 
and control engineering, and supported by computer aided engineering tools. Even though the 
practice is advanced there are still limitations. For example, in control engineering, the formalized 
descriptions deal primarily with control system behaviour in terms of steady-state and transient 
behaviour of sets of coupled differential equations. There is little, or much less concern, with issues 
such as implementation oriented structuring (e.g. how to partition algorithms into software 
modules) and how the hardware/software implementation will affect the control system behaviour, 
e.g. due to time-varying end-to-end delays and transient hardware faults. 

The situation in software engineering is less mature. For example, there are companies and 
suppliers in the automotive industry that are certified for SW-CMM [2] level 3 but the maturity of 
software development in automotive industry has just about reached the lowest two levels of the 
SW-CMM. The use of software is not new in the automotive industry but the ability to consider 
networked systems with a proper process is still in its infancy. 

Model based development of software is therefore an evolving area with many research efforts in 
place (see section 3 for an overview). 
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2 State of practice in E/E system development in the Automotive industry. 

This section provides an introductory overview of model based development practices in the 
automotive industry. The overview is not complete but has the intention to provide representative 
snapshots to illustrate the widely varying state of practice and industrial needs. The interested 
reader may refer to for example [4] and [3] for more snapshots. 

2.1 E/E system modelling and tool support 

In general, development practices vary to a great extent over different companies, and across the 
automotive domains. This is not surprising because of the heterogeneity of the automotive 
embedded systems, as described in Section 1.1. While some domains are characterized by model 
based approaches supporting the development, other domains still mainly rely on written 
documents for specifications and hand-written code for software development. Although some 
analysis is possible on the code level, this level is not suitable for communication among 
developers and does not support early analysis and design. A particular complication and 
challenge is provided by the differences in traditions and also characteristics among the domains. 

An essential facet of the characteristics is the differing models of computation, represented by 
closed-loop control in vehicle dynamics (continuous and discrete-time dynamics) and logic/state 
machines in e.g. body electronics (discrete event dynamic systems). 

For control systems development in the automotive industry, model based development is in many 
areas already the standard design approach; however, the adoption and extent varies between 
different companies and subsystems. CAE tools supporting modelling, simulation and rapid control 
prototyping (RCP) largely facilitate development even without available mechanics and electronics 
hardware, and provide means for control system verification and validation, in the lab, as well as 
in-vehicle [5]. 

Companies with more mature processes utilize tool chains typically starting from functional design 
(e.g. using Matlab/Simulink/Stateflow), using rapid prototyping (through code generation and 
prototyping hardware), software in the loop simulation, production target code generation, and 
reuse of plant models in hardware in the loop simulation. Less advanced companies still tend to 
use e.g. Matlab/Simulink, but with no or little connection to the embedded systems implementation. 

Model based verification is becoming increasingly used, where one example is the use of 
hardware in the loop simulation for both subsystem as well as system integration testing. In a 
hardware-in-the-loop simulator, the computer control system environment (i.e. the vehicle, road, 
driver actions as well as other relevant environment entities) is simulated in real-time, enabling 
system testing. With this approach automated testing can verify hundreds of test cases without 
user interaction and provide reports on the results. For active safety systems it is also possible to 
try dangerous or destructive scenarios over and over again without risking personnel. There are 
limitations though, as the sensing system irregularities and other effects where the real-world 
system would provide non-ideal data is not taken into account. 

In order to perform software in the loop and hardware in the loop, for both integration and 
verification, it is mandatory to model the control path. This needs to be done in close relation to the 
dedicated functionalities. To do such system spanning tests in an effective way, an architecture 
definition is needed, e.g. vehicle partitioning.  

However there are also control domains, such as automotive engine control, which rely heavily on 
look-up tables and calibration of systems for control purposes – i.e. with little tradition of model 
based control. However, look-up tables are also used to avoid high computation load at runtime. 
The values in the look-up tables are determined offline, for example by using Matlab / Simulink / 
Stateflow. 

With respect to software modelling, the use of the UML has been slowly increasing. However, the 
collected experience of the consortium is that the use of the UML is not widely spread for 
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automotive embedded systems. Subsets of UML are used for certain dedicated purposes, mainly 
involving documentation (e.g. use-cases, MSCs). There are also cases where the use of UML tools 
is more elaborated including code generation and model level debugging. 

The introduction of tool chains supporting model based control engineering is not unproblematic 
and is strongly related to and affected by organization, process and technology constraints. 

Introducing tool chains causes a reliance and dependence on particular tool vendors and requires 
training of personnel. For OEMs, transitioning from specification of control systems to actually 
implementing them is a large step and has many implications including maintenance of in-vehicle 
software and possibly also a larger responsibility. On the other hand, it gives the OEMs better 
control of vital vehicle functionality. 

Many OEMs only specify control systems that are in turn developed by subsystem suppliers (for 
example; e.g. BMW top models have some 60 ECUs where most are developed by some 30 
subsystem suppliers). Increasingly, models such as Simulink diagrams are used in the 
communication between organizations. 

Today, there is consequently a strong need for standardized ways of 

• describing automotive embedded systems, to support communication 

• managing the information involved in automotive embedded systems development and 
integrating the disparate sources of information, e.g. represented by UML, Simulink and 
safety analysis models, capturing different aspects of the system to be developed 

• supporting control engineering, software issues and implementation in embedded 
distributed computer systems 

• supporting various types of formal analysis techniques from different disciplines. 

2.2 Model based software development. 

Model based design (MBD) and automatic code generation are used for software development at 
vehicle manufacturers. For some years now, OEMS have used modelling to develop vehicle 
functions. Model-based approaches are systematically applied to the series currently in product 
development; the number of functions to be integrated is constantly increasing. Some of the 
functions developed comprise the entire ECU application software. 

In each development cycle, the supplier is given the OEMs requirements and test information, that 
the supplier is responsible for producing software for the model, and implementing it on the ECU. 
At present, when functions are created via modelling, suppliers still have a high manual workload 
when integrating them into the ECU [9]. The amount of work involved greatly depends on the 
software architecture used by each supplier, even when the OEM has specified the 
communication part of the basic software. In some cases, the software architecture has to be 
adapted or specially extended. There is no completely standardized software architecture, so 
sometimes extensive coordination meetings have to be held with specific suppliers. 

The need for coordination goes beyond just the software architecture. The OEM and the supplier 
also have to jointly define the description of metadata for integrating functions, such as the 
interface list for the functions, and the mapping of application signals to bus signals. Thus, the 
prerequisites for broader and process-safe use of model-based development are a uniform, 
supplier independent software architecture, and a standardized description of the metadata. 

The AUTOSAR standard [1] defines software architecture for ECUs, an integration method, and 
the interchange formats that these require. In other words the AUTOSAR standard [1] largely 
addresses the requirements for the process-safe integration of model-based functions described 
above. AUTOSAR divides the application software of an ECU into several software components 
(SWCs), which communicate with one another via middleware (RTE). SWCs encapsulate the 
software and give it type definitions, allowing data exchange only via well-defined interfaces. Two 
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mapping steps are needed for integration on an ECU: first the SWC instances are mapped to 
ECUs, and then the data elements are mapped to network signals for communication across 
ECUs. 

For the development of next generation software platforms, many OEMs are taking the first steps 
towards AUTOSAR architectures. The introduction process starts with AUTOSAR software 
architectures and works it way down. This will involve systematically dividing the software 
architecture into application parts and basic software parts, which will communicate via a defined 
interface. The base for defining this interface is the AUTOSAR standard. In this first step, the 
standard software is often based on the established OEMs core, to which selected AUTOSAR 
software services are added. In this early phase, the ECUs developed in this way will still be 
network-compatible with ECUs developed by a classic method. This means that AUTOSAR 
technology very often is introduced step by step. 

With AUTOSAR, modelling is often performed at two levels [6]. Beside the behaviour level, where 
the behaviour of the functions is modelled, there is an architecture level where the interfaces of 
the SWCs and their connections have to be formally described.  In a top-down strategy, when new 
vehicle functions are developed, it is useful to first subdivide their functionality into several SWCs, 
and then to define their interfaces at architecture level. The behaviour of the resulting SWCs is 
modelled. For previously existing function models, a bottom-up procedure can be used to 
generate the the SWC descriptions from the model interfaces. The resulting SWCs are then 
connected with one another at architecture level. 

Stepwise introduction means that it is not possible to produce a complete top-down design of a 
whole vehicle. It also means that at the level of single ECUs, not all functions are initially available 
as models. An iterative strategy has therefore provided useful. 

The resulting SWCs are collected together in a composition at architecture level and networked 
with one another. The remaining unconnected ports are led through to the outside, which turns 
them into ports in the composition. The ports now represent the communication interface of the 
ECU. Data elements referenced via the ports can be mapped to the signals specified for the ECU 
by the communication matrix. This makes it possible to create the SWC structure of an ECU at a 
reasonable cost. 

AUTOSAR is answering a longstanding need to standardize the description formats, and 
interfaces for model-based function development. The type-safe AUTOSAR descriptions make it 
possible to ensure consistency between separately developed function models at the very early 
stage in the development process, when the OEM hand over the function models to the ECU 
supplier. The expectation is that this will make the function integration by the supplier much more 
efficient. Coordination meetings held between the OEM and the supplier to discuss software 
architecture are considerably more productive because both sides can use terms that are 
standardized by AUTOSAR. The current necessity of using two development tools (for modelling 
behaviour and for describing interfaces) in developing AUTOSAR compliant function networks 
poses new challenges, as each system has to be divided into manageable and logically useful 
software components. In the future, the transition between different modelling tools, often from 
different vendors, will have to be made more efficient to ensure a “round trip”. Moreover, the 
current division of AUTOSAR development environments, into tools for architecture modelling and 
system integration, and tools for behaviour modelling with their own auto coders, is to a large part 
due to the tool domains. This limits the potential for tool-independent system modelling and 
resource optimization. Architecture and design decisions therefore need to be thought through 
carefully at the outset. Because the AUTOSAR descriptions are so extensive, and because 
individual tools do not yet provide complete equivalents, developers have to begin by deciding on 
a subset of the standard via suitable application profiles [6]. 

The definition of the AUTOSAR standard is not yet complete. Close cooperation with the 
standardization groups, research community and tool manufactures is a necessary to ensure that 
investments made in converting to AUTOSAR are future-proof. 
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2.3 Example of state of practice from the Automotive industry. 

The activities related to the Safety are directly integrated into the normal RAM(S) tasks, there  isn’t 
a specific safety design flow. Usually are applied the classical RAM(S) concepts, coming from 
functional analysis, for the system reliability. 

These analysis are performed especially thanks to the data (feedback) acquired on field. 

To perform these types of analysis, the techniques usually used are PHA (Preliminary Hazard 
Analysis) the FMEA (Failure mode and Effect Analysis) and the FTA (Fault Tree Analysis).Test 
benches, whether SIL (Software In the loop) or HIL (Hardware In the Loop), are developed to verify 
the specifications’ coverage and to validate the system. Furthermore, fast prototyping instruments 
and tool chain as Matlab/Simulnk/StateFlow are used to support these kinds of analysis. 

The introduction of new standards (ISO 26262, IEC61508,..) is forcing to introduce new formal or 
semi-formal methods to manage the requirements and specifications, allowing a more controlled 
approach for system verification and validation.  

As mentioned in section 1.1 the state of practice development is as heterogeneous as the different 
systems or domains. In the different domains, the above mentioned tools are applied. In order to 
have an efficient internal work flow and in order to reach requested quality standard (like CMMi[2], 
AutomotiveSpice[6]), several processes are defined and consequently applied. The following 
statements are valid for the application development.  

• Powertrain: 
Engine Management systems: 
Function development and architecture development is separated. A System is partitioned 
into several hundreds modules. Often used modules are grouped into bigger, configurable 
packages. An EMS consists of several 10s of those packages. By performing such a 
packaging, the number of interfaces is reduced significantly. 
Transmission control systems: 
Compared to EMS the  functional content of TCUs differ quite strongly, therefore a 
customer specific clustering is done.  

• Chassis: 
Basic Brake Systems: 
Main focus in the development is on constructive side, but not electronics 
Higher level Brake functions: 
Those functionalities are strongly realized by using electronics and dedicated software. At 
top level a separation into modules is done. 
 
Basic Brake and higher level brake functions are developed and verified using SIL and HIL. 
 
Further chassis systems, like suspension damping control, steering control are developed 
customer specific.  

• Active Safety Systems 
These use actuators provided through the Powertrain and Chassis systems. In additions 
powerful sensor systems enabling functions like Collision Mitigation by Braking are added 
to the vehicle architecture. As for Chassis systems, Active Safety systems use SIL and HIL 
during the function development. At VDI’s Electrinic in Fahrzeug fair 2007 Audi showcased 
examples of support architectures for function development. As the basis for active safety 
functions are control this method is well suited for the purpose. For the sensor system there 
is more reliance on implementation efficiency and application specific hardware. In some 
sense this work is generic but it is often necessary to adapt the sensing system 
functionality for the function flora that uses the sensor system output. 

• Body and Interior: 
The functional content and also the modelling strongly varies, depending on the customer. 



ATESST2 D1.0 Grant Agreement 224442 

© 2008 The ATESST2 Consortium        18 (63) 

In some projects an autocode generation using TargetLink, based on Simulink/Statemate 
models is performed. 

• Infotainment systems 
The functional content is more limited than the above and more standards are available, 
MOST[10] being one, Bluetooth profiles[11] being another that enables partitioning of 
systems. Attempts are made to support the verification process by using model based 
definition of behaviour using UML sequence charts and derive test cases from these. Model 
based development is limited as the target platforms are typically combinations of DSP and 
normal processors making low-level MBD difficult.  
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3 State of the art efforts related to the EAST-ADL2.0 work 

 

3.1 Language concepts 

This section describes the current state of the art in the themes guiding the work in the project. 

3.1.1 Structure modelling concepts 

Model based development for embedded systems, and in particular automotive systems can be 
supported in various ways. The AADL is a modelling language dedicated to embedded systems 
with its roots in the aerospace domain. Compared to the EAST-ADL2 and AUTOSAR combination 
it covers parts of this scope. However, because of its overlap with AUTOSAR on the software 
architecture level, and the lack of complementary abstraction levels it does not provide an 
appropriate structural framework for automotive systems development. Also, the support for 
feature modelling, requirements and variability is unique for EAST-ADL2. 

The AUTOSAR approach to structure modelling is based on a component hierarchy with ports and 
connectors. Ports are typed by an interface which may have several data elements (for data flow) 
or operations (for client-server). The component hierarchy is clearly defined through a type and 
prototype pattern. AUTOSAR also solves the problem of referencing specific instances of reused 
components by means of the InstanceRef construct. For example, if a specific component 
somewhere in a hierarchy is allocated to a specific ECU, the InstanceRef construct includes the 
hierarchy path to the component, to avoid that all components of this type are allocated on the 
same ECU.  

SysML and MARTE are UML profiles that augment plain UML with constructs for systems 
engineering and embedded real-time systems modelling, respectively. Both approaches, and even 
plain UML are useful tools in automotive development and EAST-ADL2 has integrated some of 
these concepts, for example requirement concepts from SysML and timing constructs from 
MARTE. The general structuring approach found in SysML based on blocks and ports is generally 
highly appropriate and applied in EAST-ADL2.  

What is not present in any of these approaches is the concept of abstraction levels and a model 
structure tailored for automotive use through several lifecycle phases. The EAST-ADL2 structure is 
a framework that both supports the modelling needs and guides modelling in a way that improves 
model exchange and understanding between stakeholders. 

3.1.2 Behaviour modelling concepts 

In EAST-ADL2, behaviour modelling relies on the definition of a set of elementary functions that 
are executed based on the assumption of synchronous run-to-completion execution (read inputs 
from ports, compute, and write outputs on ports). This was chosen to enable analysis and 
behavioural composition and to make the function execution independent of behavioural notations: 
inside each function, the data transformation can be described according to various languages and 
paradigms, and various legacy tools including general UML tools and domain-specific tools (e.g. 
Simulink, ASCET). 

Functions own an “ADLBehavior” that is refined in “ExternalBehavior”, when definition is made in 
external tools (e.g. Simulink, ASCET, etc.) and “NativeBehavior”, when definition is made with pure 
EAST-ADL2 constructs. 

3.1.2.1 Native behaviour: 
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“NativeBehaviors” are mapped directly to UML “Behaviors” such that “StateMachines”, “Activities”, 
or “Interactions” – depicted as sequence diagrams – can be used w.r.t to modelling needs.  

An important aspect of the definition of native behaviour is the relationship between behavioural 
models and composite structures. This was tackle in a pragmatic fashion during ATESST1: the 
application of EAST-ADL2 stereotypes on UML behavioural concepts alters UML2 semantics such 
that among other things, triggering policies and run-to-completion assumption hold (see deliverable 
[12]). A recent paper accounts for this issue in a more general and fundamental fashion [13]. The 
authors show that very few in-depth studies of UML2 composite structures have been published, 
resulting in misinterpretations and ambiguities on composition mechanisms and propagation 
semantics of ports. References of up-to-date research in this field are provided and an alternative 
approach to the use of stereotypes is advocated: rely on the definition of explicit behaviours on the 
ports of the composite structures, so that delegation schemes, unexpected requests among other 
things are properly identified. 

3.1.2.2 External Behaviour: 

Off-the-shelf tools for behavioural modelling like SCADE, ASCET, Simulink, etc. all support model 
based development with analysis and synthesis to various degrees. It is not probable that a single 
tool will be used for an entire vehicle development project, but model integration is necessary. 
EAST-ADL2 supports this aspect by allowing external representation of behaviour and concepts 
for integration with requirements management tools.  

“ExternalBehaviors” are mapped to the UML “OpaqueBehavior”, which features both a language 
and body attributes (holding references to the type of external tool and language used, e.g. 
Simulink, ASCET, etc.). 

3.1.2.3 Continuous-time systems modelling at different realization levels 

Continuous-time behaviour is foremost needed to describe the controlled system, i.e. the plant 
model. It is also possible that control functions, e.g. PID control, can be described using 
continuous-time functions at the functional analysis abstraction level.  

A typical continuous model of a plant system is described using one or many systems of 
constraints. Typically the plant has dynamics, which means it can be described using differential 
equations (DE:s), or differential algebraic equations (DAE:s).  

Models of continuous-time systems can, like embedded systems, have different levels of 
abstraction. Since the expression abstraction level is reserved in EAST-ADL2, they are called 
realization levels. These realization levels were created to provide answers to such questions as: 

• What is the behaviour of Simulink models? 

• What is the behaviour of Modelica models? 

• How is it possible to connect acausal and causal systems? 

3.1.2.3.1 Acausal models 

An acausal model is a model where the behaviour is represented as equations, or constraints. The 
word acausal could be misleading, since it is a negative definition (i.e. models not being causal). 
An acausal model should rather be seen as a set of equations, or constraints. Constraints can 
have a specified cause and effect, for example: 
y = if v > limit then limit else v; 
Although labeled as an acausal model, there is a causality where a value of v gives a value of y.  
The following model is of a bouncing ball: 
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der(height) = velocity; 
der(velocity) =-g; 
when height <= radius then 
   reinit(velocity, -c*pre(velocity)); 
end when 
 

The model is acausal in the sense that either of the variables height, velocity or g could be 
used as input to the model. Another way of expressing this is that the number of equations vs the 
number of unknowns have to be matched. 

Acausal models are often associated with the Modelica language. Modelica combines acausal 
modelling with object-oriented thinking. For interfaces between physical components, it is favorable 
to use acausal modelling, together with power port connectors where effort and flow information is 
interchanged. This way, physical components can be connected to each other, similar to how they 
are connected physically. Another advantage of using this realization level is that equations can be 
simplified and even solved analytically. 

Two new tools were released this year: Simscape 3.0 from the MathWorks, and MapleSim from  
Maplesoft. Both these tools are similar to Modelica: combining equation based effort/flow 
modelling, which enables physical modelling. Also SystemC-AMS and VHDL-AMS uses acausal 
models, but limited to electric systems. 

3.1.2.3.2 Continuous causal models 

Continuous causal models are typically used by control engineers, to describe a system and its 
controller. This abstraction level is also how continuous models are modeled using 
MATLAB/Simulink block diagrams. There is no one-to-one mapping of an equation to a continuous 
causal representation, the mapping depends on which variables that are used as input and output, 
but also if integral or differential causality is chosen. Another continuous causal representation is 
bond-graphs, which can be transformed into block diagrams [Karnopp2000]. 

3.1.2.3.3 Discretized models with solver 

Discretized models typically have update and output functions, as a function of a time step. The 
selection of solver is crucial to get a valid simulation result, including consideration of stiff systems, 
selection of time-step etc. If hybrid models are simulated, the solver also needs to take into 
account zero-crossing effects. This level of abstraction can be described by the same means as a 
computer program, e.g. UML activity diagrams, state machines, c-code. 

3.1.2.3.4 Discretized models with solver and platform implementation 

Especially for real-time Hardware-in-the-loop simulations, it is crucial that the simulation can be run 
in real-time. The platform can have a limited numerical resolution, have memory constraints, etc. In 
a real-time system, the calculation time needs to be taken into account, and possibly scheduled.  

3.1.2.4 Current status of EAST-ADL2 continuous-time behaviour 

It is possible to define continuous causal ADL_funtions, by setting the attribute is_Discrete to 
false. A means to describe Acausal models is not available, and could be seen as a target for 
ATESST2. Discretized models should be possible to describe using EAST-ADL2 behaviour 
notation, this is however yet to be verified. 

3.1.3 Safety modelling and analysis 
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The first part of this section contains a comparative, critical review of the SOTA in model-based 
safety analysis, a relatively new field of research that has dynamic grown and yielded a plethora of 
new results over that last fifteen years. The review discusses important results and identifies 
techniques that could provide a basis for the definition of appropriate safety/error modelling & 
analysis concepts in EAST-ADL2. The second part of this section focuses on ISO 26262, the 
emerging automotive safety standard. The standard is likely to influence developments in the 
sector and should, therefore, be also considered towards the definition of relevant concepts in 
EAST-ADL.  

3.1.3.1 Model-Based Safety Analysis  

Model-based safety analysis is an increasingly important technique in the design of safety-critical 
systems. This is particularly true of Real-Time Embedded Systems (RTES), which are growing 
ever more complex and which are increasingly distributed across a networked architecture or 
incorporated into cooperative systems. Often RTES are used in order to improve the safety of a 
system; for example, Electronic Stability Control in vehicles have been shown to be effective in 
maintaining control and saving lives by significantly reducing the number and severity of crashes 
[14]. Because RTES are widely used in safety-critical industries such as the automotive and 
aerospace industries, it is vital to be able to perform a thorough and accurate safety analysis of 
those systems to ensure they meet their dependability requirements. By identifying areas in a 
system where reliability or safety is deficient, actions can be taken to remedy the weaknesses and 
thereby improve the design of the system. 

Motivation for Model-Based Safety Analysis. Traditional safety analysis has typically operated 
on an informal understanding of the system design. Such techniques include fault tree analysis 
(FTA) [15][16], in which the combinations of possible causes are deduced from the system failure, 
and Failure Modes & Effects Analysis (FMEA) [17], which analyses the possible effects each 
failure can have on the system. Techniques such as these are often carried out manually, either by 
a single person or a team of engineers, in order to produce comprehensive documents to fulfil 
safety requirements and to devise strategies to mitigate the effects of failure [18]. Although a great 
deal of valuable knowledge about the safety and reliability of the system is gained in the process, 
this type of informal, ad-hoc approach has a number of drawbacks.  

Firstly, because the analysis takes place using informal knowledge of the failure behaviour of the 
system, the safety analysis is stored separately from the knowledge of the structure of the system, 
which is typically modelled more formally, and this can result in discrepancies or inconsistencies. 
Secondly, the primarily manual nature of the analysis process increases the risk of introducing 
errors or producing an incomplete analysis, particularly as the systems in question grow more 
intricate. Furthermore, a manual analysis is usually much more difficult and expensive, meaning 
that it is rarely carried out more than once and often only at the end of the design process to 
ensure that the design meets safety requirements, despite the potential benefits that multiple 
safety analyses can yield when  used as part of an iterative design process. Finally, the informal 
nature of the results of such ad-hoc analysis makes it difficult to reuse that information, whether in 
a future iteration of the same system or in the design of a new system, particularly because the 
safety information is stored mainly within the results of separate analyses and is therefore 
separated from the system design itself. 

In model-based safety analysis (MBSA), by contrast, the safety analysts and the system designers 
use the same model of the system, or at least models which are closely linked in some way, and 
this has a number of important benefits. Firstly, the resulting model is often more formal than a 
separate safety analysis and this can introduce the possibility of automating part of the process of 
safety analysis, e.g. by automatically generating fault trees from the system model or by simulating 
the failure behaviour of the system by injecting faults into the model. This not only simplifies the 
process, it also saves time and more importantly enables the safety analysis to be used as part of 
an iterative design process because new results can more easily be generated once the model has 
been changed. The more structured nature of the modelling also reduces the probability of 
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introducing errors or of omitting important detail since the safety information is linked to the 
structural/nominal model of the system. Finally, a model-based safety analysis is often much more 
suitable for reusing in other projects, because the safety information is packaged with the system 
model, usually at a component-level, making it possible to reuse parts of the system without 
necessarily needing to perform another separate safety analysis. 

A considerable number of different MBSA approaches have been developed, and some of the 
more prominent examples will be discussed below. Model-based safety analysis and verification 
has also been investigated in a number of other recent projects, including ISSAC and its 
predecessor ESACS in the aerospace industries (where the goal was to develop a formal 
methodology and tools for the safety analysis of complex aeronautical systems), the ASSERT 
project with similar goals but more focused on software intensive systems specified in AADL, the 
SETTA project (focusing on the use of time-triggered architectures in automotive systems), and the 
SAFEDOR project (which aimed to develop new practices for the safety assessment of maritime 
systems). 

Modelling in MBSA. As previously mentioned, one way of simplifying the process and of enabling 
useful iterations of safety assessment is to automate (or partly automate) the analysis process. In 
industry, there are established software tools that automate calculations on manually constructed 
fault trees or assist clerical tasks in essentially manual FMEA processes (e.g. Isograph's 
FaultTree+ tool). However, the synthesis of predictive system failure models such as fault trees 
and FMEAs remains manual. Over the last 15 years, research has focused on further simplifying 
safety assessment by automating the synthesis process. This work has followed two different 
paradigms, each defining a distinct way of synthesising system failure models from other system 
information. The first paradigm can be called compositional failure analysis while the second 
behavioural fault simulation [19][20]. Compositional techniques are usually deductive in nature, i.e. 
safety analysis proceeds from system failures to determine the causes of such failures), while 
behavioural simulation techniques are typically inductive in nature, i.e. the analysis moves 
forwards from known causes to determine the effect of such causes in the system). There is also a 
separate paradigm for the diagnosis of faults in active systems based on models of those systems 
(rather than synthesis of failure analyses from system design models) known as model-based 
diagnostics. A more thorough comparison of the various techniques can be found in "Towards a 
practicable process for automated safety analysis" [21]. 

Compositional Safety Analysis approaches 

In compositional failure analysis, system failure models are constructed from component failure 
models using a process of composition. System failure models are, or can be automatically 
translated to, well known dependability evaluation models including fault trees, stochastic Petri-
nets and Markov chains. Techniques that follow the compositional approach include: Failure 
Propagation and Transformation Notation (FPTN) [22], Hierarchically Performed Hazard Origin and 
Propagation Studies (HiP-HOPS) [23], Component Fault Trees (CFT) [24], State-Event Fault Trees 
(SEFT) [25] and Failure Propagation and Transformation Calculus (FPTC) [26]. The Error Model 
Annex of the AADL also falls into this category as components are hierarchically annotated with 
state-based failure information, which can then be subsequently analysed by tools [27]. 

It is important to note that in these approaches, the system failure model is not always merged with 
the nominal model of the system. In AADL, for example, the failure (or error model) model extends 
the nominal model of the system and has references to the hierarchy and components in  that 
model; similarly, in HiP-HOPS, the failure model and nominal model are closely connected, as 
failure data is embedded in annotations to the system components and can make semantic 
references to system properties. In other techniques such as FPTN, CFT, SEFT and EAST-ADL2, 
the error model and the nominal model are separate models which are more loosely connected. 

Behavioural Fault Simulation approaches 

In behavioural fault simulation, system failure models equivalent to an FMEA are produced by 
injecting faults into executable formal or semi-formal specifications of a system, thereby 
establishing the system-level effects of faults. A modelling tool is typically expected to do the 



ATESST2 D1.0 Grant Agreement 224442 

© 2008 The ATESST2 Consortium        24 (63) 

analysis automatically. The modelling tool can be a simulator containing libraries of components 
and their faults, in which case it is typically useful in a particular domain (e.g. simulation of 
electrical diagrams, piping and instrumentation diagrams etc). However, the modelling tool can 
also be more generic, e.g.  enabling representation and formal analysis of systems represented as 
state-automata. In this case, the tool can be applied in many domains. Techniques that follow this 
later approach include safety analysis using formal techniques such as Altarica [28], FSAP-NuSMV 
[29], Software Deviation Analysis [30], DCCA [31], as well as fault simulators such as AutoSteve 
[UOH_01] and AutoFMEA by Ricardo [UOH 02]. 

Model-based Diagnostics 

Fault diagnosis is the process of inferring the causes of system failure from their observable 
symptoms. In model-based diagnosis this is partly achieved by reasoning on an executable model 
of the system [44]. Typically, in a real-time diagnosis scenario, the state predicted by the 
executable model is compared to observations of state variables of the system that can be 
monitored using sensors. Any discrepancy between the actual and predicted system state 
indicates a symptom of failure which is further investigated to identify the causes of that failure. 
The process involves identifying and progressively eliminating sets of candidate causes by 
performing more comparisons between predicted and actual states. Fault diagnosis is a process 
that can be carried out either in real-time or off-line following an indication that a failure is present. 
Running an executable model and performing the required inferences is often infeasible in real 
time, so simpler diagnostic models are often used including fault trees or decision trees.  In several 
approaches, such diagnostic trees are automatically or semi-automatically constructed from design 
models of a system [43][35]. 

There are a number of model-based diagnostics tools that have been developed in recent years, 
such as RAZ'R [32], MDS [33], and RODON [34]. Although many such tools employ existing 
programming or modelling languages to represent a predictive model of behaviour or a simplified 
logical model of fault propagation, others use custom-designed languages such as Rodelica [35] 
which is a declarative equation-based language derived from Modelica.  

Modelling Primitives for Error Modelling. Although the model-based safety analysis and 
diagnostic techniques mentioned above share common goals, they do not necessarily share a 
common approach. One of the primary distinctions between these techniques is in the way they 
choose to model failures. These broadly fall into one of three categories: fault propagation-based, 
state-based, and equation-based. 

Fault Propagation based approaches 

In these approaches, the failure behaviour of the system is modelled as a propagation of failure 
from one component to the next until it becomes a system-level failure. The propagation typically 
follows lines of communication or other connections between components, e.g. dataflow, fluidic, 
energy connections etc. Failures can also propagate by other means, e.g. by the physical proximity 
of components. The failure propagation itself is typically described using some form of logic, e.g. in 
the case of FPTN, FPTC, CFT and  HiP-HOPS, this is done with Boolean logic, relating output 
failures to a combination of input and internal failures. More complex forms of propagation can be 
described with more complex logic, e.g. a propagation of failure that is dependent on the sequence 
of failure can be described in HiP-HOPS using Pandora [36], a form of temporal logic.  

State-based approaches 

Another way of describing the failure behaviour of a system is to use states. In these approaches, 
the occurrence of a failure is modelled as the transition of the system from a nominal state into a 
failed state. This is the approach employed by AADL and Altarica, for example. In AADL, the error 
model is implemented as a form of stochastic automaton; error and repair events are defined, 
along with possible error states and input / output events (to support propagation to and from other 
components), and then transitions are defined to show how events can cause the system or 
component to transit from one state to another. Properties can also be defined for error states and 
this mechanism allows the addition of quantitative failure data such as failure and repair rates. 
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Equation-based approaches 

A third possibility is to represent the occurrence of failures using equations. This is the approach 
used in Rodelica, the model-based diagnostics language based on Modelica (also equation-
based). Rodelica provides semantics for failure modes and intervals, allowing for the specification 
of component-level failure data. Other equation-based languages include gProms [37], VHDL-AMS 
[38], and Ascend [39]. 

Critique of MBSA approaches. The number of different types of approaches (e.g. compositional 
vs behavioural, state-based vs propagation-based) is due in large part to the different goals of 
these approaches. Some techniques are geared towards off-line safety analysis and diagnosis, like 
Rodelica and the other model-based diagnostics approaches; others, like AADL's error model 
annex and HiP-HOPS, are intended primarily as design aids to help achieve safety requirements 
or, like Altarica, DCCA, and FSAP/NuSMV, as formal methods for verification of system safety 
using model checking. Some techniques also offer additional capabilities, e.g. HiP-HOPS provides 
capabilities for multi-objective design optimisation enabling evaluation of candidate designs which 
are automatically generated by genetic algorithms [40]. Therefore, any commentary on these 
techniques has to take into account the goal the technique was designed to achieve. 

Different approaches also offer different levels of automation. Although most techniques offer 
some form of automated safety analysis, the scope and performance of this automation varies 
considerably. For example, behavioural fault simulation approaches like Altarica, DCCA, and 
FSAP-NuSMV in theory offer more complete automation than compositional safety analysis 
techniques because they base the simulation on a full behavioural model of the system; because a 
simulator of model-checker is expected to perform most of the assessment, they require less 
additional modelling by the designer to handle errors. They also tend to require a simpler form of 
component failure modelling (typically only internal failure modes are considered). However, the 
effort required for behavioural system modelling – especially formal modelling – should not be 
underestimated. 

This higher degree of automation does come with a price, however: a higher computational cost 
than compositional safety analysis techniques, which typically employ algorithms of lower 
complexity. Most behavioural simulation techniques are also inductive, i.e. the assessment 
proceeds from known causes to unknown effects, and in this type of analysis, the effective 
assessment of combinations of causes is at best very difficult and at worst impossible to achieve 
due to combinatorial explosion. Assuming that there are n possible component failures in a 
system, assessment of combinations of m of those failures requires that the analysis is repeated 
n!/((n-m)!*m!) times. For a system that has 1000 failure modes, assessment of the effects of 
combinations of 2 failure modes requires that the analysis is repeated approximately half a million 
times. Although this number can be reduced by carefully exploiting assumptions of independence 
and by taking advantage of the monotonic properties of failure in coherent failure scenarios, the 
problem of combinatorial explosion still persists. In deductive approaches, e.g. fault tree 
approaches like Component Fault Trees and HiP-HOPS, the analysis of propagation of failures is 
deductive (from effects to causes) and therefore not as prone to combinatorial explosion. Fault 
trees are synthesised in linear time and this time is not determined by the highest order cutset (i.e. 
the maximum number of failure modes considered in combination, which is defined only by the 
positioning and nesting of AND gates in the error propagation model). In the case of HiP-HOPS, 
this has enabled not only application of the technique to large systems but also its combination 
with computationally greedy heuristics such as genetic algorithms for the purpose of architectural 
optimisation with respect to dependability and cost [40]. 

Another problem with formal techniques is that they typically define their own language for nominal 
and failure modelling, meaning it is not always fully compatible with other widely used design 
languages and tools. On the other hand, some approaches, e.g. HiP-HOPS, focus only on failure 
modelling and can easily complement design languages that focus on descriptions of nominal 
behaviour. As a result, HiP-HOPS has been used with a number of different tools and modelling 
languages in the past, including EAST-ADL, Matlab Simulink, and SimulationX (which is based on 
Modelica). 



ATESST2 D1.0 Grant Agreement 224442 

© 2008 The ATESST2 Consortium        26 (63) 

Many formal techniques also tend to focus on functional safety analysis only, whereas other 
approaches such as HiP-HOPS and AADL offer capabilities for probabilistic analysis (e.g. Poisson, 
Binomial and Weibull calculation models) and in the case of HiP-HOPS, capabilities for common 
cause and zonal analyses as well. Probabilistic analysis not only enables long term system 
reliability and availability prediction, it is also important for software safety. Clearly, there is often a 
need in software design to consider the probability of failure of components, otherwise it is 
practically impossible to decide on appropriate techniques to ensure data integrity, fault detection 
and fault tolerance. If controls rely on certain inputs, for example, we need to know the level of 
integrity with which these inputs are provided by sensors and therefore the failure modes of those 
sensors and their probability of occurrence. 

Finally, some techniques are more supportive of reuse than others. Although most allow reuse in 
some form, some techniques provide dedicated support for reuse of failure data, e.g. the 
introduction of inheritable composable specifications of failure patterns in HiP-HOPS [41] or the 
AADL's support for the storage and reuse of error information in a library (including capabilities for 
adapting and overwriting information in specific situations) [42].  

In summary, the various model-based analysis approaches discussed above have different 
strengths and benefits, e.g. the high degree of automation possible with formal behavioural 
simulation techniques versus the higher performance, more scalable algorithms available with 
deductive compositional techniques. These two paradigms must therefore be both supported by 
EAST-ADL2. HiP-HOPS provides a good example of a compositional technique and offers good 
capabilities for safety analysis, however it lacks capabilities for formal verification. For this reason, 
the state-based error model annex of AADL could also prove useful as an input to the definition of 
the error model of EAST-ADL2. Finally, the capabilities of Rodelica as a means of facilitating 
modelling for fault diagnosis in EAST-ADL2 will also need to be further explored.  

3.1.3.2  ISO°26262 adoption 

The introduction of new functionalities, with an impact on the vehicle stability or handling, could 
cause a higher hazard level in case of malfunction or failure. 

The new functionalities have to be considered “safety relevant” and potentially “safety critical”; it 
means that, in case of faults, these functionalities could have a significant impact on the system 
behaviour.  

As a consequence, new functionality in the area of driver assistance, vehicle dynamics control, 
active and passive safety systems, increasingly touches the domain of safety engineering. Future 
development and integration of these functionalities will further increase the need of: 

- New technologies to enable such systems to function more effectively with increased 
design complexity and managing the safety; 

- Safe system development processes within the possibility to show evidence that all 
reasonable safety objectives are met (acceptable risk reached). This highlights the role of staff 
engaged in the design, development and maintenance of these safety-related systems. The 
achievement of sufficiently low levels of risk is critically dependent on individual and team 
competence 

With the trend of increasing complexity, software content and mechatronic implementation, there 
are increasing risks from systematic failures and E/E random hardware failures, often rooted in 
management and engineering processes. 

The new International Standard ISO°26262 includes guidance to avoid these risks by providing 
appropriate requirements and processes.  

This International Standard is the adaptation of IEC°61508 to comply with needs specific to the 
application sector of E/E systems within road vehicles. This adaptation applies to all activities 
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during the safety lifecycle of safety-related systems comprised of electrical, electronic, and 
software elements that provide safety-related functions. 

System safety is achieved through a number of safety measures, which are implemented in a 
variety of technologies (for example: mechanical, hydraulic, pneumatic, electrical, electronic, 
programmable electronic etc). While this International Standard is concerned with E/E systems, it 
may also provide a framework within which safety-related systems based on other technologies 
may be considered. 

The ISO°26262: 

- Provides an automotive safety lifecycle (management, development, production, operation, 
service, decommissioning) and supports tailoring the necessary activities during these lifecycle 
phases; 

- Provides an automotive specific risk-based approach for determining risk classes 
(Automotive Safety Integrity Levels, ASILs); 

- Uses ASILs for specifying the item's necessary safety requirements for achieving an 
acceptable residual risk; and 

- Provides requirements for validation and confirmation measures to ensure a sufficient and 
acceptable level of safety being achieved. 

Functional safety is influenced by the development process (including such activities as 
requirements specification, design, implementation, integration, verification, validation and 
configuration), the production and service processes and by the management processes. 

Safety issues are intertwined with common function-oriented and quality-oriented development 
activities and work products. The ISO°26262 addresses the safety-related aspects of the 
development activities and work products and it’s applicable to: 

- E/E systems installed in road vehicles 

- Interaction among these systems and vehicle systems 

- Malfunction related to safety critical systems 

- Foreseeable operational errors 

- Foreseeable misuse 

- Foreseeable maintenance malfunctions 

- All lifecycle  

- New systems only: on the market after the publication of the International Standard 

- Series production road vehicles 

This International Standard is based upon a V-Model as a reference process model for the 
different phases of product development; It consists of the following parts, under the general title 
Road vehicles — Functional safety: 

Part 1: Glossary 

Part 2: Management of functional safety 

Part 3: Concept phase 

Part 4: Product development: system level 

Part 5: Product development: hardware level 

Part 6: Product development: software level 

Part 7: Production and operation 

Part 8: Supporting processes 
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Part 9: ASIL-oriented and safety-oriented analyses 

The shaded "V"s represent the relations between Parts 3, 4, 5, 6 and 7 of this International 
Standard. 

 

Figure 2 ISO26262 standard structure. 
Part 3 of the International Standard specifies the requirements on the concept phase for 
automotive application. This phase, under road vehicles manufacturers’ responsibilities, includes 
the item definition, the initiation of safety life cycle, the hazard analysis and risk assessment (ASIL 
determination, Safety goals and Safe states definition) and safety requirements definition.  

Part 4 specifies the requirements on product development at the system level. This phase, under 
road vehicle manufacturers’ responsibilities, includes the safety technical specification, the system 
design integration and testing, the safety validation and assessment, the product release. 

Part 5 specifies the requirements on product development at the hardware level (safety technical 
design). This phase is primarily the responsibility of component suppliers. Because the 
manufacturer has the overall responsibility for meeting safety requirements, the evidence for safety 
has to be provided to the vehicle manufacturer with an appropriate level of detail. 

Part 6 specifies the requirements on product development at the software level for automotive 
applications (safety technical design). As with part 5, this phase is primarily the responsibility of 
component suppliers. Because the manufacturer has the overall responsibility for meeting safety 
requirements, the evidence for safety has to be provided to the vehicle manufacturer with an 
appropriate level of detail.  

Part 7 specifies the requirements on production as well as operation, service and 
decommissioning. This phase is under the responsibility of the vehicle manufacturer. 

3.1.4 Product family and variability modelling 

Over the past 10 to 15 years, software product families or software product lines have drawn 
increasing attention from software science and practice. The fundamental principle of product line 
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oriented development is to no longer develop the individual products of a software manufacturer 
independently from one another and in parallel, but as instances of an embracing product line 
infrastructure, which are then derived from this infrastructure by way of configuration and, if 
required, manual adaptation. Thereby, the focus of development shifts from the individual products 
to the set of products the manufacturer has on offer, i.e. his product line, thus turning this product 
line into a tangible entity of development. 

In addition to the state-of-the-art investigated during ATESST1 and documented in the related 
ATESST1 deliverables, an important new related research activity came up recently: the addition 
of variability concepts to AUTOSAR was considered by the AUTOSAR consortium. At the time of 
writing, however, no details on these efforts are published yet and they can therefore not be 
documented in detail here. 

Furthermore, many other contributions were published by the research community, esp. in the form 
of conference or journal papers, which may be of interest to ATESST2. A detailed account of these 
smaller publications is beyond the scope of this overview deliverable; also it is not possible to 
evaluate their relevance for EAST-ADL2 without a concrete research question in mind. Therefore, 
they will be investigated in more detail within WT3.3 in relation to individual EAST-ADL2 
extensions developed there. 

3.1.5 Analysis-Driven Architecture Evaluation and Optimization 

This section is divided into two parts, the first part discusses modelling requirements to support 
analysis and the second focusing more on modelling support required to perform optimization on 
the described architecture. 

3.1.5.1 Architecture Design and Analysis Integration 

While the maturity of analysis techniques1 has led to a set of well established mathematical 
formalisms in software engineering, such as for example Fault Tree Analysis (FTA), Rate 
Monotonic Analysis (RMA) and further extensions, Petri nets, queuing theory, and timed automata, 
their widespread use with complex industrial systems and into integrated tool environments still 
remains largely open. Analysis is a difficult and time-consuming task, and to save time, many 
industries either forgo it until absolutely necessary or train their designers to perform preliminary 
analysis. However, most designers are under-trained in analysis and too busy to perform useful 
analysis. 

In order to perform these analyses, the design representation must be first transformed into a 
formalism that admits a form of mathematical evaluation. This formalism is referred here as 
“analysis model”. Analysis tools accept as inputs these analysis models and evaluate them 
mathematically to produce results which are then used to successively refine the design models. 
Although both the design and the analysis models are views of the same system, they describe it 
at different levels of semantic abstraction. Obtaining the latter from the first is generally a difficult 
task. Hence, design-analysis integration often turns out to be a difficult proposition. For instance, 
current industrial tools for timing analysis, such as for example SymTA/S from Symtavision, 
TriPacific’s RapidRMA, Livedevices’ Real-Time Architect, CoMET from VaST and Vector’s 
CANAlyzer, and academic ones such as MAST and TIMES, provide very strong solutions for 
analyzing real-time properties, but each does so with different system representation formalisms. 

                                                 

 

 
1 In this document, analysis refers to some kind of engineering/quantitative analysis that uses mathematical techniques to study certain 
quality attributes of the system. They include stress, thermal or fluid analysis in mechanical engineering, and performance, safety or 
reliability analysis in software engineering. 
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In addition, due to the large syntactic and semantic gap between design and analysis 
representations, some design information must undergo significant simplification (e.g., behaviour 
model transformation) or refinement (e.g., addition of the underlying OS services model of a 
system) before being fed into the analysis models understood by analysis applications. This is 
usually a tedious, slow, and error-prone process that characterizes the infamous “islands of 
automation”. 

The software engineering community has invested special efforts in incorporating the abilities to 
specify analytical constructs and quality properties with enough expressive power, while still 
preserving the modelling abstraction level used by system architects. Important research work has 
been carried out in order to provide modelling languages (e.g., UML, SDL, AADL) with clear and 
well-formed semantic to support analysis (a summary is proposed in [54]). The ultimate goal is to 
enable designers to perform analysis directly from their architecture design tools (by calling 
analysis tools via specific user interfaces) thus reducing the time required to prepare a model for 
analysis. 

However, most of the current work is characterized by providing monolithic and particular solutions 
for specific analysis techniques, limiting the capacity of reuse, composition, and interoperability 
between heterogeneous approaches. These aspects reduce enormously their use in real complex 
embedded systems, which are intrinsically heterogeneous. In most of cases, no single methods 
can support the analysis of entire systems. In addition, current trends in the model-based 
engineering community focus more on how to represent analyzable systems, than on how to build 
these representations in a global design flow, and to merge analysis results in the global system 
solution. A fundamental shortcoming in current model-based analysis research is the inability to 
capture decision-related knowledge and the context in which the analysis results are applied [50].  

This raises the need of more powerful model-based analysis support and flexible modelling 
mechanisms to drive design from techniques such as design space exploration and sensitivity 
analysis. 

Design Space Exploration. In order to be able to make right system platform selections, the 
feasibility of candidate application-platform bindings need to be predicted w.r.t. different non-
functional requirements and constraints. Design space exploration assists designers to efficiently 
decide among candidate implementation alternatives especially when the space of possible 
solutions is large. The decisions are usually located according to several design goals, and the 
alternatives therefore represent a multi-criteria decision problem [51]. In an integrated model-
based process of real-time systems, these criteria should be typically distributed in different model 
views which provide specific quality constraints and predictions –typically, deadlines and resource 
capacity vs. response times and slacks- obtained from various information sources, such as safety 
analysis, performance simulation, or scheduling analysis. 

Furthermore, in a scenario for efficiently analyzing systems, there is the variety of aspects that 
need to be analyzed and also the number of solution methods that can be performed (and their 
information requirements). Regarding the problem of dependability versus cost optimization, 
Papadopoulos and Grante [62] propose a multi-objective optimization approach that uses Pareto 
frontiers and genetic algorithms to explore optimal tradeoffs between dependability attributes and 
cost [55] (see also section 3.1.6.2). In the timing analysis field, Racu et al [CEA 9] proposed an 
approach based on genetic algorithms to optimize power consumption parameters while meeting 
timing requirements. This is implemented in the SymTA/S tool. 

Sensitivity Analysis. It cannot be expected that all non-functional information required for 
analysis is fully available up front. Instead, designers must work with incomplete specifications, 
early property estimates, or even flexible constraints that must be balanced with other parameters. 
Sensitivity analysis is an approach to deal with those design uncertainties, i.e., how far a particular 
parameter can be changed without affecting the feasibility of the system. In general, sensitivity 
analysis shows how “sensitive” are the overall results to a given parameter. It allows the system 
designer to assess the system-level impact of changes in quality properties of individual hardware 
and software components. For example, variations in the implementation of different application 
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parts, functional extensions, or changes of timing at subsystem or system interfaces are issues 
that can turn a previously conforming system into one that violates non-functional constraints. 

Particularly for scheduling-aware analysis techniques, there is a number of works providing search 
algorithms to one-dimensional and multidimensional (simultaneous variations of a set of 
parameters) sensitivity analysis [53]. Although the sensitivity analysis process may be fully 
delegated to analysis tools, there is an important gap in modelling languages for addressing the 
correct parameterization (e.g., determination of dependent, independent, and critical parameters) 
and solution selection from a modelling viewpoint. 

Preliminary Conclusions, Open Issues & Way Forward Towards Analysis Integration in 
EAST-ADL2. From a modelling language viewpoint, some aspects need more investigation. For 
instance, current modelling solutions for describing single-point “allocations” as proposed by 
SysML or MARTE lack important features required for analysis. Suppose that we link an 
application model with a platform model (application-platform allocation) in the context of a given 
analysis scenario. The non-functional annotations involved in the application model (e.g., 
execution times, memory usage) and the platform model (e.g., resource utilization) will get a 
specific set of values. The SysML and MARTE allocations are specified by a unique relationship 
between the source and the target models. The first question that arises is, “what happens if we 
specify multiple allocation cases?”, for example, in order to allocate the same application in 
different available platforms. We actually do not have means to declare multiple versions of non-
functional values on the same models. We can formalize this limitation as follows: 

“Given various allocation alternatives of application/platform models, how to specify the 
different property value versions (resulting from the allocation) annotated in the internal 
modelling parts of the allocated application/platform models?” 

Furthermore, different model analysis methods focus on different aspects of the model. Building 
heterogeneous models of analysis contexts therefore implies to integrate analysis results from 
different views and/or subsystems and to calculate global predictions. 

“How can we express the relationships between different analysis methods to calculate 
global quality parameters (derived predictions, optimization objective functions, measures 
of effectiveness)?” 

On the other hand, although the sensitivity analysis process may be fully delegated to analysis 
tools, there is an important gap in modelling languages for addressing the correct parameterization 
(e.g., determination of dependent, independent, and critical parameters) and solution selection 
from a modelling viewpoint:  

“How can we drive sensitivity analysis tools by properly qualifying parameters in design 
models?” 

In [50], the authors have used the basic MARTE mechanisms to specify non-functional variables to 
compose multiple quantitative scenarios that are further evaluated to make efficient design 
decisions. An extension of this approach in ATESST-2 could provide a basis for analysis 
integration in the context of the various analyses that are possible using the framework of EAST-
ADL2 models. 

3.1.5.2 Optimisation 

Motivation for Optimisation. A particularly challenging aspect of a multi-objective analysis of a 
complex system under design that was briefly mentioned in the preceding section is that of design 
exploration. Embedded systems are characterised by sharing of information and hardware 
resources which means that large numbers of configuration and reconfiguration options are 
available not only at design time but also at run time, due to the use of shared processors and 
communication channels. When the functions of a system can be delivered by multiple different 
configurations, designers are faced with hard optimisation problems, especially when the design 
space is very large (as is typical for complex systems).  
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The dependability of individual configurations can of course be determined using safety analysis 
and verification techniques such as fault tree analysis and model checking. However, satisfying 
dependability requirements with optimal use of resources and minimal costs requires additional 
technological support in the form of a global optimisation process. Where it is possible to fulfil all 
dependability requirements within economical and technical bounds, the architecture that has 
minimal costs is the optimisation goal. If all dependability requirements cannot be met with 
acceptable costs, then the problem becomes one of finding architectures that achieve optimal 
trade-offs between dependability and cost.  

It is widely accepted that the various formulations of the above represent hard, combinatorial multi-
objective optimisation problems that can only be approached systematically with the aid of 
optimisation techniques and computerised algorithms that can effectively search for optimal 
solutions in large potential design spaces.  

As an example problem, one mechanism that designers have for altering the safety and reliability 
characteristics of systems is the substitution of single components with fault tolerant schemes that 
incorporate redundant components and subsystems. The technique has been shown to work well 
in combination with measures that ensure the diversity of replicated (hardware or software) 
components and minimise the possibility of common cause failure. However, the decision on the 
optimal location and level of replication of components is a non-trivial task and this is especially 
true as systems increase in size and complexity. This problem of maximising reliability via such 
replication within given cost and other (e.g. weight) constraints has come to be known as the 
Redundancy Allocation Problem (RAP). 

One of the objectives of the ATESST2 project is therefore to develop a novel approach to multi-
objective evaluation and optimisation of systems, particularly with regard to safety and reliability. 
Such an approach would be generic and could include cost and any quality attribute (such as 
safety, reliability, availability, performance etc), albeit with two constraints: firstly, there has to be a 
technique capable of assessing the quality of the model in terms of the chosen attribute (e.g. in the 
case of safety, it must be possible to evaluate the safety of the system); secondly, there must be 
automatic transformations that can be applied to the model to alter the chosen attribute (e.g. in the 
case of reliability, one option would be the possibility of replicating a component). The goal of the 
approach would be to find designs that represent optimal or near-optimal tradeoffs amongst the 
chosen attributes and cost for a complex system. The potential benefits from such an optimisation 
technique are substantial and include the automation of complex evaluations and the 
establishment of a transparent, mathematical basis for achieving successful tradeoffs among 
quality and cost in the design of complex systems. 

Approaches to Optimisation. Optimisation problems like the RAP have been addressed by 
numerous researchers. A review of early work on the RAP can be found in Frank et al (1977) [56] 
and Chen (1992) [57] has shown that the problem is NP-hard. Fyffe et al (1968) [58] used a 
dynamic programming algorithm to solve RAP in a series of 14 k-out-of-n subsystems and it was 
also solved using integer programming by Ghare and Taylor (1969) [59]. Nakagawa and Miyazaki 
(1981) [60] used a surrogate constraints approach to solve 33 variations of Fyffe's problem which 
have since become a benchmark for optimisation methods seeking to solve the RAP.  

There are a number of heuristics that can be employed to perform this sort of optimisation, 
including simulated annealing, Tabu search, genetic and ant system algorithms; all of these have, 
for example, been applied to the RAP. Coit and Smith (1996) [61] have used a genetic algorithm 
(GA) to solve the 33 variations of RAP and have demonstrated results that improve those reported 
by application of exact mathematical methods. Kulturel-Konak et al (2003) [62] have used Tabu 
search which performs a guided neighbourhood search and is individual based rather than 
population based as with a GA. A limitation of all of these methods is the use of constraints in 
place of true multi-objective search. A single optimal solution is typically sought which maximises 
reliability within certain cost and weight constraints. However, in practice, designers are often 
interested in examining several optimal or near-optimal solutions that provide different tradeoffs 
among the parameters of the optimisation. To enable this type of optimisation, Kulturel-Konak et al 
(2005) [63], Papadopoulos and Grante (2005) [64], and Grunske (2006) [65] have all proposed 
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multi-objective heuristic approaches that generate Pareto frontiers of non-dominated solutions 
providing such tradeoffs. 

Though there have been advances in solving RAP, one important limitation and a constant feature 
of all earlier approaches is the use of reliability block diagrams (RBDs) for reliability evaluation. 
RBDs have been extensively used because they fit the simplified modelling assumptions of series-
parallel systems that have dominated RAP literature. Indeed, representation of failure behaviour in 
RBDs assumes that the system is formed in a series-parallel configuration of components, and 
either works or fails in a single failure mode which typically suggests complete loss of system 
function. A parallel configuration typically fails if all (or the majority of) constituent components fail 
and a series configuration fails if any of the subsystems in the series fails. These assumptions are 
hardly ever met in the design of complex systems and networks. 

Another issue that has not been addressed in earlier work is limitations in the performance of 
optimisation algorithms. Most realistic systems by far exceed the computational requirements of 
the benchmark problems discussed in the literature. In the past, this has confined application of 
techniques to small examples. However, recent advances in parallel algorithms and progress in 
GRID computing create possibilities for major advances in the optimisation of dependable systems 
in the near future. 

HiP-HOPS is a recent model-based analysis technique that offers a departure from RBDs [66]. 
HiP-HOPS overcomes the limitations of RBDs by providing automatic analysis of complex systems 
(i.e. not necessary series-parallel as in the RAP) that exhibit multiple failure modes. HiP-HOPS 
makes use of genetic algorithms to determine the optimal allocation of redundant components and 
has been demonstrated on the RAP, where it produces optimal or near-optimal solutions along the 
Pareto frontier. The safety analysis capabilities of HiP-HOPS are used as the evaluation function to 
determine the quality of the system variation being considered at each stage of the optimisation. 
This offers a significant performance advantage – because HiP-HOPS analyses usually take only a 
few seconds to complete, evolution over hundreds or thousands of generations of possible designs 
is relatively quick. Another advantage is the flexibility of HiP-HOPS, which also allows for other 
objectives to be considered in optimisation. Additionally, HiP-HOPS does not rely on fixed 
redundancy allocation schemes and so it is possible to experiment with other methods of 
improving safety, e.g. active and passive standby redundancies, recovery blocks, execution 
platform reassignment, safety monitors, and in the general case substitution of any hardware of 
software sub-architecture with user specified alternatives.   

In summary, enabling model-based system optimisation could assist the systematic exploration of 
large and complex design spaces. However, there has been little practical progress in the field. To 
our knowledge there has been no work focused on dependability versus cost optimisation in the 
context of emerging and ADLs, and there is, therefore, a clear opportunity for a contribution to the 
SOTA in this area, e.g. by exploring how EAST-ADL2 can deliver such optimisation in conjunction 
with tools such as HiP-HOPS. 

3.2 Meta-modelling languages 

Two relationships form the core of models used in computer systems2. The first relationship, called 
“represented by”, identifies a representation role of a given modeled object over a model. The 
second relationship, called “conforms to”, identifies a dependency of a given model on a modelling 
language. In model-driven engineering (MDE), the latter relationship receives special attention 
since domain modelling languages are described and prescribed by models. These models are 
                                                 

 

 
2 This section is adapted from H. Espinoza’s PhD thesis An Integrated Model-Driven Framework for Specifying and Analyzing 
Non-Functional Properties of Real-Time Systems, CEA LIST, september 2007. 
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called metamodels. A metamodel is yet another abstraction highlighting properties of the model 
itself. This model is said to conform to its metamodel like a program conforms to the grammar of 
the programming language in which it is written.  This means that a metamodel describes the 
various kinds of contained model elements and the way they are arranged, related and 
constrained. 

There are different taxonomies for defining the characteristics required to fully specify a domain-
specific language (see for example [67], [68]). In all these classifications, we have identified three 
important specification criteria: 

1. Syntax. This includes a set of constructs that can be exchanged and specifies how they 
can be linked together to form valid expressions in a language (syntactical rules). Abstract 
syntax defines the rules for creation of well-formed sentences in a given language, whereas 
concrete syntax provides a concrete representational system for expressing the elements 
of a given language. In visual modelling languages, concrete syntax may be graphical, 
textual, or mixed. 

2. Semantics. To provide semantics for syntactical constructs, we need to describe their 
meanings in terms of some well-known semantic domain. This implies describing 
syntactical elements in terms of a formal, mathematical framework (denotational approach), 
a set of logical rules (axiomatic approach), or a set of rules for execution on an abstract 
machine (operational approach). 

3. Pragmatics. For modelling languages in particular, the relationship between the syntactical 
constructs and their understandability (to language users) is key to the effectiveness of 
model interpretation. Pragmatics take into account the visual features of concrete 
syntactical constructs (e.g. morphological, geometric, spatial and topological relationships) 
used by visual modelling languages to represent real objects and relationships. 

The predominance of metamodels in visual modelling languages specifications raises the issue of 
their potential reuse. Indeed, the ability to reuse and/or specialize (parts of) existing metamodels is 
crucial to avoiding development of new modelling languages from scratch. There are two major 
ways to extend modelling languages [69]: 

1. Heavyweight extension. This approach implies the inclusion and refinement of new 
language constructs from an existing modelling language. It allows designers to extend, 
refine and modify the source language as required to create a new modelling language. 

2. Lightweight extension. This approach is restricted to the use and extension of an existing 
modelling language metamodel without modifying the abstract syntax or semantics of the 
source modelling language. 

The choice of approach certainly depends on the particular language application and on what kind 
of (and how many) design resources are available (tools, know-how, etc.). In a domain-specific 
modelling language (DSML) that derives from a lightweight extension of a general-purpose 
language, such as UML, we must make tradeoffs between a number of advantages and 
disadvantages. This is the approach carried on with the EAST-ADL2 language implementation. 

The main advantages of the lightweight extension mechanism are the low cost of support tools and 
a more effective language learning curve for multiple and long-term projects. This approach does 
not generally require very specialized training. Its disadvantages relate fundamentally to the base 
language, which must cover a broad semantic domain to be reused by multiple DSMLs. In UML, 
for instance, this implies specification of multiple semantic variation points that increases the 
complexity of the DSML design. 

Profiles [70] are the built-in lightweight mechanism that serves to extend MOF-based languages. 
More specifically, profiles are used to customize UML for a specific domain or purpose via 
extension mechanisms that enrich the semantics and syntax of the language. A stereotype is the 
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basic feature for UML extension. It can be viewed as the specialization of an existing UML 
concept, which provides capability for modelling domain-specific concepts or patterns. Stereotypes 
may have attributes (also called tags) and be associated with other stereotypes or existing UML 
concepts. From a notational viewpoint, stereotypes can give a different graphical symbol for UML 
model elements. For instance, a class stereotyped as «clock» might use a picture of a clock 
symbol instead of the ordinary class symbol. Additionally, stereotypes can also be influenced by 
restrictions expressed in constraints. The standard machine-readable textual language for defining 
constraints in MOF-based languages is Object Constraint Language (OCL). 

Since the recent UML2 versions, profiles have significantly enhanced both the syntax and the 
semantics of the extension mechanisms: 

• Profiles integrate a special graphical notation that facilitates understanding of the defined 
extensions. Stereotypes are represented as classes linked to their base metaclasses by the 
“extension” association. Constraints and stereotype attributes are then represented as part of 
the stereotype definition. 

• Profiles can use an excerpt of the whole UML metamodel. A typical profile that imports only a 
subset of UML is SysML. This makes SysML a compact DSML in terms of the number of UML 
concepts used. 

• The stereotype definition concept is better positioned in the metamodelling pyramid promoted 
by OMG. Unlike UML 1.x, stereotypes are now considered M2 constructs. 

However, efforts made to improve the profile mechanism have contrasted with the lack of guidance 
for its correct use. One common approach to designing UML profiles involves the so-called 
conceptual domain models. The language specification is defined at a first stage by means of a 
domain model (expressed in MOF or alternatively in UML itself), which abstracts away the UML 
mapping issues. The main intent of conceptual domain models is to separate concerns and 
enhance the appropriateness of the language construct with regard to the domain concepts. The 
domain model, which is created with pure domain considerations, is then translated into the target 
profile.  

A recent paper [71] proposes a systematic methodology to design UML profiles by adopting a set 
of minimum framing rules. Since these rules are defined on the basis of regularly occurring design 
patterns, domain models can be subsequently checked for self-consistency and interactively 
transformed into stereotypes, tags and constraints. Each decision of the designers is interactively 
evaluated to alert them to potential UML language conflicts and propose more appropriate 
mapping decisions. Designer choices are stored in a decision file that allows profile regeneration, 
which is particularly useful when modifications are applied to the domain model. 

Such a proposal is of particular importance in the work conducted in ATESST2, however some of 
the suggested ideas need to be adapted to the fact that EAST-ADL2 is a language for which 
implementations – in the form of profiles – already exist and have been continuously refined. 
Another aspect is that the conceptual domain language is as important as its implementation as 
profile and both need not be too divergent, which somewhat constrains the scope of design 
patterns applicable to enhance the sole profile. 

AUTOSAR Metamodelling 
AUTOSAR defines templates that are the format for exchange of software information within the 
automotive domain. Formally this is performed by the definition a metamodel that is transformed 
into an XML Schema. The metamodel is defined in the UML tool Enterprise Architect and 
AUTOSAR has defined rules for the design of this metamodel. Basically AUTOSAR uses a subset 
of UML, with additional restrictions and a UML profile to tag information in the metamodel [72]. 
These rules do not only facilitate the generation of an XML Schema of a particular structure but 
also the generation of editors directly from the AUTOSAR metamodel. 
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EAST-ADL2 is related to AUTOSAR such that EAST-ADL2 refers to AUTOSAR, i.e. a lightweight 
extension - even though AUTOSAR can also be seen as a subset of EAST-ADL2 where the 
AUTOSAR System is in the ImplementationArchitecture abstraction level of EAST-ADL2. 

EAST-ADL2 has defined the domain model in the same tool as AUTOSAR uses. By applying the 
same rules as AUTOSAR poses on its metamodel some additional benefits can be reached: 

1. The format of the domain model complies with the automotive domain de facto standard. 

2. Distinction of different concepts and their relations as defined by AUTOSAR are formalized 
in the domain model. E.g. types, prototypes, and references to occurrences (instanceRef) 

3. The formalization of the domain model would also serve as additional design information 
when the UML Profile and Tool platform is defined within the ATESST2 project. 

4. The EAST-ADL2 domain model would be prepared to be used to define AUTOSAR 
compliant exchange formats and editors. 

5. The experiences in designing a UML Profile for EAST-ADL2 would give experiences on 
how a profile for AUTOSAR should be designed. 
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4 EAST-ADL2 in the context of various evaluations and classifications of ADL 

4.1 Introduction 

For a long time the term Architecture Description Language has not been clearly defined in the 
research community. Instead frameworks for classification and comparison of languages have 
been devised. The languages claiming to be ADLs span a wide range: from programming 
languages to formal specification and simulation languages, that differ in the level of tool support, 
the extent to which the syntax and semantics of the language is captured formally, the support for 
model checkers, code generation and runtime support. We will evaluate the current status of 
EAST-ADL according to a widely recognized classification framework. 

The benefits of ADLs include a shift in focus to larger scale thinking about software, also called 
"programming in the large", raising the importance of a higher level view of the software. Thus 
allowing better planning, aid understanding, aid communication through simple and often graphical 
syntax. 

 

4.2 A Classification Framework for ADLs 

A list of the minimum requirements for an ADL is provided by Medvidovic and Taylor [8]. An ADL 
must explicitly model components, connectors, and their configurations; furthermore, to be truly 
usable and useful, it must provide tool support for architecture-based development and evolution. 
An ADL is thus a language that provides features for modelling a software system's conceptual 
architecture, distinguished from the system's implementation. ADLs provide both a concrete syntax 
and a conceptual framework for characterizing architectures. 

The classification framework proposed Medvidovic and Taylor [8] consists of several criteria that 
can be packaged into four groups: components, connectors, architectural configurations and tool 
support. In the following we will look at the criteria for each of these groups separately. 

 

4.2.1 Components 
ADLs allow a component based description of the structure of the system, where the structure can 
be described in terms of components and connectors. Components are units of computation or 
data structures. 

• Interface: An interface specifies the services offered by the component and thus specifies 
the interaction points between components and the external world. An Interace also 
specifies the computational commitments and constraints. 

• Types: A type provides an abstraction that encapsulates functionality for reuse. It can be 
instantiated multiple times and can even be parameterized. 

• Semantics: The semantics provides a high level model of a components behavior. 

• Constraints: A constraint specifies an assertion of the system. 

• Evolution: Evolution support allows the modification of the properties of the component, in a 
controlled manner, with techniques such as subtyping and refinement. 

• Non-functional properties: All the properties that cannot be derived from behavior need to 
be specified separately such as the properties needed for simulation, performance 
analysis. 

 

4.2.2 Connectors 
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Connectors model the interactions among components and specify additional rules. Just as the 
components, the connectors are classified along the lines of interfaces, types, semantics, 
constraints, evolution and non-functional properties. 

• Interface: The interface of a connector enables the proper connectivity between 
components by specifying the interaction between the connector and its attached 
components or other attached connectors. 

• Types: A connector type is an abstraction that encapsulates component communication, 
coordination, and mediation decisions. This can be accomplished by an extensible type 
system, or a built-in, enumerated type. 

• Semantics: The semantics is a high-level model of the connector’s behavior. It entails the 
specification of an interaction protocol. 

• Constraints: A constraint ensures the connector's adherence to an interaction protocol, e.g. 
by specifying multiplicity. 

• Evolution: Evolution supports the modification of the connector's properties, e.g. by 
incremental information filtering, subtyping or refinement. 

• Non-functional properties: A Non-functional property states the requirements for correct 
implementation and is used for e.g. simulation, performance analysis. 

 
4.2.3 Configurations 

While components and connectors specify the parts of an ADL model, the architectural 
configuration describes criteria for the model as a whole. The configuration can be thought of as a 
graph that describes the architectural structure. 

• Understandability: The software architecture described by the ADL is an early 
communication conduit for different stakeholders. Therefore the ADL should present 
structural information with a simple and understandable syntax 

• Compositionality: The software architecture is described at different levels of detail, and 
provide the ability to abstract parts away. 

• Refinement and traceability: The ADL can be used as a bridge between informal 
specification and implementation. The description allows correct and consistent refinement 
into executable code, including traceability of changes. 

• Heterogeneity: The ADL allows integration of preexisting components, components of 
different granularity, modelling language and implementation language. Thus an ADL 
needs to be open and provide facilities for different types of components and connectors. 

• Scalability: An ADL provides abstractions to cope with software complexity and size. 
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• Evolvability: The ability for addition, removal, replacement, and reconnection in a 
configuration. 

• Dynamism: While evolution captures offline changes, dynamism deals with structural and 
behavioral modifications during execution. 

• Constraints: Global constraints that oft depend on constraints for components and 
connectors. 

• Non-functional properties: Non-functional properties on a global level. 

 
4.2.4 Tool support 

ADLs provide a formal description of the system, thus they can be manipulated and reasoned 
about in an automated fashion by software tools. This tool support determines the usefulness of an 
ADL to a large extent. 

• Active Specification: An active specification reduces possible design options. 

• Multiple Views: Multiple views of the same architecture are a way of reducing the perceived 
complexity of the architecture. It is also useful to provide different views for different 
stakeholders. At the same time one has to assure the consistency between the views. 

• Analysis: Through analysis of the architecture errors can be detected early on, reducing 
their impact and cost. 

• Refinement: The correctness and consistency between architectures cannot always be 
guaranteed, but through tool support confidence in the correctness and consistency can be 
gained. 

• Implementation Generation: The end goal of the development process is the executable 
system and its implementation. Automated generation can ensure consistency and 
traceability between architecture and implementation. 

• Dynamism: When changes are made to the architecture they are evaluated to determine if 
they are desirable and property-preserving. 

 
4.3 Evaluation of EAST-ADL 

We use the framework of Medvidovic and Taylor [8] introduced in the previous section to 
evaluate the current status of EAST-ADL. 

 
4.3.1 Components 
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• Interface: EAST-ADL uses ports for defining the interface of a component. A variety of 
port constructs is available, such as the ADLFlowPort, ADLPortGroup and 
ADLClientServerPort. 

• Types: EAST-ADL uses a Type/Prototype concept, where types are defined and later 
reused as prototypes. This concept is realized in the constructs ADLFunctionType and 
ADLFunctionPrototype. It is possible to parameterize these constructs using variability 
concepts. 

• Semantics: The semantics of EAST-ADL is described textually in a language 
specification document. However, EAST-ADL is not specified with formal semantics. 

• Constraints: To put constraints on EAST-ADL components, the Object Constraint 
Language (OCL) can be used. EAST-ADL also offers the construct DesignConstraint 
used for feature modeling. 

• Evolution: Extensive support for the evolution of requirements is available. The 
evolution can be tracked explicitly by constructs such as ADLRefine, ADLSatisfy, 
ADLVerify, ADLRealization. 

• Non-functional properties: EAST-ADL offers constructs for safety analysis and timing 
analysis. The construct TimingRestriction allows to give bounds on system timing 
attributes, i.e. end-to-end delays, periods, etc. The SafetyRequirements construct allow 
to augment components with information for safety analyses. 

 
4.3.2 Connectors 

• Interface: The interface of connectors is specified by its ports. EAST-ADL offers the same 
constructs for connectors as for components, namely ADLFlowPort, ADLPortGroup and 
ADLClientServerPort. 

• Types: EAST-ADL uses a Type/Prototype concept. 

• Semantics: The semantics of EAST-ADL is described textually in a language specification 
document. However, EAST-ADL is not specified with formal semantics. 

• Constraints: OCL can be used for defining constraints on connectors. 

• Evolution: There are no concepts for the evolution of connectors. 

 
4.3.3 Configurations 

• Understandability: The EAST-ADL implementation as a UML profile offers a graphical 
syntax, which improves understandability of complex configurations. 
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• Compositionality: EAST-ADL provides five levels of abstraction: Vehicle Layer, Analysis 
Level, Design Level, Implementation Level and Operational Level. These levels are 
useful for composition, but also for refinement and traceability. 

• Refinement and traceability: EAST-ADL provides five levels of abstraction: Vehicle 
Layer, Analysis Level, Design Level, Implementation Level and Operational Level. The 
elements of different layers can be linked through typed traceability links such as 
ADLRefine, ADLSatisfy, ADLVerify and ADLRealization. 

• Heterogeneity: EAST-ADL allows the integration of preexisting components at different 
levels of abstraction. It even allows the integration of "external" definitions, mainly for 
behavior modeling. 

• Scalability: EAST-ADL has several approaches for dealing with complexity and size. 
Feature modeling offers one such approach, but also the five predefined levels of 
abstraction help to limit the perceived complexity. 

• Evolvability: The EAST-ADL tools allow addition, removal, replacement and 
reconnection. 

• Dynamism: At the moment there is no explicit language support for structural and 
behavioral modifications during execution. 

• Constraints: Configurations and its components can be constrained using OCL. 

• Non-functional properties: Just as with components, timing information and safety 
information can also be included on a global level. 

 
4.3.4 Tool support 

• Active Specification: The EAST-ADL tooling actively supports the user during 
specification, e.g. the tool prevents syntactically incorrect connections between 
components. 

• Multiple Views: EAST-ADL provides possibilities for multiple views on different levels of 
abstraction. However, it is left up to the user to ensure the consistency between the 
different views. 

• Analysis: EAST-ADL supports validation techniques such as simulation, rapid control 
prototyping (RCP) and hardware/software in the loop and safety analysis. Simulation 
requires execution of the plant model and the system model, which are supported. 

• Refinement: EAST-ADL provides five levels of abstraction: Vehicle Layer, Analysis 
Level, Design Level, Implementation Level and Operational Level. The refinement 
between the first three levels is explicitly supported by the current EAST-ADL tools. 
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• Implementation Generation: Currently there is no automated transformation from EAST-
ADL to an implementation language such as AUTOSAR. 

• Dynamism: At the moment there is no support for property-preserving refactorings of 
models. 

 
4.4 Conclusion 

In this section we have introduced the framework of Medvidovic and Taylor for the classification 
and comparison of ADLs. We then evaluated EAST-ADL according to this framework. 
According to this framework, EAST-ADL fulfills all the criteria of an Architecture Description 
Language. We found that according to this framework, EAST-ADL can be improved regarding 
dynamism. 
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5 Conclusions 

As can be seen in this document it is hard to define what should be in a architecture description 
language like EAST-ADL2. The project limits itself by setting a scope on language to provide a 
‘layered approach’ to how electronic systems in vehicles can be defined. This is not enough as 
there are many ways to do this. 

Choosing the right ones in the multitude of possible abstraction layers and viewpoints needing 
modelling support is one task. The important tasks in this project is the ability to define structure, 
behaviour, variability and requirements. To make matters even more complicated there are often 
several possible non-compatible ways to solve these problems. This document tries to show the 
different ways and their pros and cons. In this conclusion a justification based on project expertise 
and the history of the language itself.  

Some issues stem from the project itself, others are consequences based on the introduction of 
new state-of-practice approaches that the language need to support or conform to. Projects like 
Autosar, TIMMO, ISO-26262 are sources for more input to the language. Autosar provides a full 
platform that the implementation EAST-ADL tries to model logically is executed physically on. 
TIMMO builds on EAST-ADL1 and adds ways to model timing. ISO-26262 has a need to model 
functions form a safety point of view. As state-of the art is updated the language needs to flex and 
adapt, not necessarily by changing the language but by giving an interpretation of how a specific 
task should be modelled. 

Importance of analysis driven design 
The importance of model based design comes from the aspects of seeing the model as a 
information storage where one can perform tasks automatically. Using a document approach you 
are limited to extraction of data for different purposes using manual labor. With a logical model of 
the system it is possible to do semi-automatic analysis by adding data to the model and extract 
data to external tools connected to the information model. But with more and more complex 
models the need to understand how systems affect systems and not only how components in a 
system interacts is needed and this is difficult to do without a larger scope model and automatic 
tools. 

As the external tools use the data in the model data it is quite possible to make design/architecture 
decisions that are fed back to the model automatically. This makes tracking of change easier as 
the number of points where data for the system is stored is lowered. But it is possible that analysis 
driven design can be made in such a way that permutations of the model under design are created 
as the analysis is performed and one can trace the way the model has been updated by the tool 
chain. This is not really a language issue but a tool and model presentation issue. 

Safety Modelling and Safety Analysis.  
In  section  3.1.3, we identified two paradigms for model-based safety analysis that currently define 
the SOTA in this area (compositional safety analysis & behaviour fault simulation) and reviewed a 
number of techniques that fall in this classification. We saw that the two paradigms have different 
strengths and benefits, e.g. higher degree of automation is possible with formal techniques or 
behavioural simulation while higher performance and more scalable algorithms are available with 
deductive compositional safety analysis techniques. Fault simulation performed on semi-formal or 
formal models tends to provide more accurate results when specific instances and scenarios of 
failure are examined. However, compositional safety analysis techniques can achieve wider 
coverage of faults and fault combinations, they are more flexible and can be applied to a greater 
range of systems. This makes both paradigms useful in their application to model-based design, 
and therefore a modelling language should be designed to support both paradigms.  

HiP-HOPS and the AADL’s Error Model Annex can together provide a good basis for the definition 
of the Error Model of EAST-ADL2. They both enable the modelling of system failure behaviour and 
allow analysis of that behaviour using tools. Because they do not rely on simulation or model 
checking, they have greater performance and allow for more expressive descriptions of the failure 
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behaviour. In the case of HiP-HOPS, this latitude makes it possible to develop extensions into 
reusable patterns of failure, temporal failure logic, and automatic design optimisation of 
dependability versus cost. HiP-HOPS also supports both FTA and FMEA but produces them via a 
deductive process, avoiding the combinatorial explosion issues inherent in purely inductive 
techniques like DCCA or Altarica. 

Overall our analysis shows that  HiP-HOPS offers a good range of capabilities and, since its failure 
semantics are independent of the modelling language used, it is flexible enough to be incorporated 
into other modelling languages. It could therefore provide a basis for defining error modelling and 
safety analysis in EAST-ADL2, and its multi-objective optimisation capabilities could be used to 
support optimisation in EAST-ADL2 as well. However, HiP-HOPS is based on fault propagation 
and lacks the concept of states. Although this is not necessarily a problem in terms of safety 
analysis, as Pandora makes it possible to extend HiP-HOPS with temporal logic to implicitly 
represent transitions to failed states, explicit state modelling could still be useful for formal 
verification & behavioural fault simulation e.g. using model-checkers. For this reason, the state-
based error model annex of AADL could also prove useful as an input to the error modelling in 
EAST-ADL2 and we believe that it would still be possible to harmonise a state-based error model 
with HiP-HOPS and thereby continue to derive the benefit of its analysis & optimisation 
capabilities. Finally, the capabilities of Rodelica as a means of facilitating modelling for fault 
diagnosis in EAST-ADL2 will also need to be further explored.  

There is very little work on integrating model-based safety analyses techniques with emerging 
ADLS and, therefore, there is a large potential for contribution by ATESST2. Any such contribution 
would need to take into account developments in the emerging ISO 26262 safety standard and 
enable application of the standard, e.g. by facilitating the allocation, decomposition and 
demonstration of ASILs as this was discussed in Error! Reference source not found..  
A more detailed analysis of SOTA in safety analysis and recommendations for error modelling in 
EAST-ADL2 will be given  in deliverables I3.2.1 and I3.2.2 which are dedicated to these two topics. 

 

Multi-objective Analysis and Optimisation  
 
In section  3.1.5 we reviewed work on architecture-driven multi-objective analysis and optimisation. 
Current trends in architecture analysis are characterized by providing monolithic solutions for 
specific non-functional parameters (e.g., either performance or variability only). However, 
embedded system architectures need more flexible mechanisms and tools to specify and to 
evaluate many different non-functional design alternatives at all design levels. We have seen that, 
from a modelling language viewpoint, some aspects need additional investigation. 

In general, we need sound modelling means to integrate non-functional information from different 
validation and verification viewpoints and provide an optimized global solution to a given design 
decision problem. In ATESST2, the thrust of the work has to be put in the specification 
mechanisms for integrating multidimensional information, its treatment (transformation/refinement) 
to enable mathematical calculation, and the methodological basis to allow developers for a 
systematic use of the proposed approach. The use of mathematical algorithms (search strategies, 
genetic algorithms, etc.) to explore design alternatives by optimizing objective functions is a core 
subject in this topic. Numerous and useful results can be found in the literature. The suitability of 
existing algorithms for automotive embedded systems has to be evaluated (as discussed later in 
this section). 

From the architecture modelling viewpoint, some of the core issues have been defined as follows: 

 “Given various allocation alternatives of application/platform models, how to specify the 
different property value versions (resulting from the allocation) annotated in the internal 
modelling parts of the allocated application/platform models?” 



ATESST2 D1.0 Grant Agreement 224442 

© 2008 The ATESST2 Consortium        45 (63) 

Furthermore, building heterogeneous models for analysis implies to integrate analysis results from 
different views and/or subsystems and to calculate global predictions. 

“How can we express the relationships between different analysis methods to calculate 
global quality parameters (derived predictions, optimization objective functions, measures 
of effectiveness)?” 

Last but not least,:  

“How can we drive sensitivity analysis tools by properly qualifying parameters in design 
models?” 

Some early contributions were identified on these topics, which will serve as a basis for the work in 
ATESST2, such as SysML parametric diagrams, and further proposals to model complex analysis 
contexts based on SysML and MARTE. 

Focusing on the difficult issue of increasingly larger and complex potential design spaces, in 
section  3.1.5.2 we saw that the problem of model-based system optimisation, particularly in terms 
of dependability (i.e. safety, reliability, availability) and cost, is an important problem that could 
have significant implications for system design processes if solved; the ability to rapidly search 
through large design spaces to determine optimal or near-optimal design variants, particularly for 
complex systems such as real-time embedded systems or active cooperative systems, could result 
in designs of superior safety and reduced cost, quite aside from the time-saving benefits.  

However, as we have shown, there has been little practical progress in the field, as most research 
has focused on solutions to relatively small and restricted theoretical problems; in particular, to our 
knowledge there has been no work focused on optimisation in the context of emerging modelling 
languages and ADLs. There is, therefore, a clear opportunity for a contribution to the state of the 
art in this area.  

It would therefore be worthwhile to investigate further how appropriate dependability and cost 
modelling concepts can be developed to support multi-objective optimisation of EAST-ADL2 
models in conjunction with tools such as HiP-HOPS that provide such advanced capabilities. The 
aim of optimization would be to automatically evolve models that do not necessarily meet 
dependability requirements to designs that fulfil such requirements with minimal costs. 
Optimisation could be achieved via exploration of potential design spaces using meta-heuristics 
such as genetic algorithms. The specification of design alternatives and variant sub-architectures 
the combinations of which define the potential design space will be described in EAST-ADL2 using 
an extension of the present variability concepts that will be achieved in ATESST-2.  

Recommendations for dependability and cost modelling concepts to support optimisation in EAST-
ADL2 will be given  in deliverable I3.5.1 which is dedicated to this topic. 
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Appendix A Research and standardization activities 

This list describes research and standardization activities in areas related to EAST-ADL2 scope. 

ArtistDesign 
http://www.artist-embedded.org/artist  

Follow up of the ARTIST2 network of excellence on Embedded Systems Design. 

ASSERT 
http://www.assert-online.net  

ASSERT is a (finished) project with the goal to improve the system-and-software development 
process for critical, embedded real-time systems in the Aerospace and Transportation domains. 
ASSERT improved the Systems Engineering practice in this area by taking a proof-based 
approach. In addition, a reference architecture that can be reused and instantiated in critical 
applications was developed. ASSERT was based on the AADL. 

AIDE 
www.aide-eu.org 

AIDE is a (finished) integrated project in the eSafety area. The focus in AIDE is on system support 
to handle human behavioural aspects of new safety functions. AIDE applications represent the 
kind of complex, safety-related systems that require rigorous development support to manage their 
complexity and achieve correctness and safety.  

CESAR 
CESAR is an ARTEMIS project starting in 2009 with the purpose of identifying means to meet 
safety requirements and standards. The project covers several domains, and the idea is to identify 
a common core and define specializations for automotive, aerospace, automation and rail 
domains.  

COMBEST 
www.combest.eu 

COMBEST will, during 2008-2010, provide a formal framework for component based design of 
complex embedded systems. This framework will, by building on substantial highly recognized 
background results of the academic partners, partly carried out within the integrated project 
SPEEDS, enable and provide:  

Enable formal integration of heterogeneous components, such as with different models of 
communication or execution;  

Provide complete encapsulation of components both for functional and extrafunctional properties 
and develop foundations and methods ensuring composability of components;  

Enable prediction of emergent key system characteristics such as performance and robustness 
(timing, safety) from such characterizations of its subcomponents;  

Provide certificates for guarantees of such key system characteristics when deployed on 
distributed HW-architectures 

 

CVIS 
www.cvisproject.org  

The CVIS project aims to design, develop and test the technologies needed to allow cars to 
communicate and network directly with the roadside infrastructure. 

DECOS 
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http://www.decos.at  

DECOS -Dependable Embedded Components and Systems-  is an integrative project that will 
develop the basic enabling technology to move from a federated distributed architecture 
 (Architecture based on functional cluster in which the subsystems are implemented on “dedicated 
networks and discrete hardware resources”) to an integrated distributed architecture (the next 
generation dependable integrated architectures where “Safety Critical” and “Non Safety Critical” 
functionalities are combined in an integrated architecture by means of a dependable infrastructure 
and where the different networks of the sub-systems are simplified) in order to reduce 
development, production and maintenance cost and increase the dependability of embedded 
applications in many application domains. DECOS plans to develop technology invariant software 
interfaces and encapsulated virtual networks with predictable temporal properties such that 
application software can be transferred to a new hardware and communication base with minimal 
effort (legacy re-use). The DECOS methodology and the tools has been evaluated by building 
three applications in the automotive, aerospace and control domain, respectively. DECOS builds 
on the substantial results of previous European research projects (NextTTA, FIT, TTA, SETTA, 
RISE, X-By-Wire, PDCS, DEVA, DSOS). The components and tools developed within DECOS 
covers: cluster design, middleware and code generators, validation and certification as well as 
systems-on-a-chip (SoCs) for high dependability applications.  

 

Decos is a (finished) FP6 project proposing a distributed execution platform and tools for the 
design of dependable embedded systems. The goal is to improve diagnosis, maintenance and 
dependability, reduce development and component cost and address intellectual property issues 

EASIS 
www.easis.org 

EASIS is a (finished) project with the goal to define and develop a powerful and highly dependable 
in-vehicle electronic architecture. In addition, the project addressed methodology and tools 
supporting the development of these systems.  

EDONA 
http://www.edona.fr/ 

The EDONA (Environnements de Développement Ouverts aux Normes de l'Automobile) French 
project of System@tic Paris-Région cluster aims at the building of an open platform that facilitates 
the realization of business modular development chains, interoperable and adaptable to the 
different needs of actors and business of the automotive industry. It aims at developing an Eclipse 
based tool chain for development of AUTOSAR systems including modelling, simulation, test and 
HMI.  

ESACS 
http://www.cert.fr/esacs/ 

ESACS (finished) is a RTD project that responds to the Growth 2000 call, Key Action "New 
perspectives in Aeronautics".  

The technical and scientific objectives of ESACS are to define a methodology to improve the safety 
analysis practice for complex systems development, to set up a shared environment based on 
tools supporting the methodology, to validate the methodology through its application to case 
studies. The environment between design and safety will consist of tools to generate parts of the 
safety analysis using information extracted directly from the system model and of a repository 
including all the safety information related to the complex system under development.  

Families 

www.esi.es/en/Projects/Families/ 
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FAMILIES (finished) is a next project in a sequence of following projects: ARES and PRAISE, then 
ESAPS, and CAFE.  

ITEA projects ESAPS, and CAFÉ has lead to a recognized European community on the subject of 
System Family Engineering. The FAMILIES project aims at growing the community, consolidating 
results into fact-based management for the practices of FAMILIES and its preceding projects, and 
to explore fields that were not covered in the previous projects, in order to complete the 
Framework.  

 

GST 
www.gstforum.org/en/home.htm 

GST is a Framework Programme 6 project addressing the standardization of telematics services. 

HARTES  
www.hartes.org 

hArtes is an European project aiming at laying the foundations of a new holistic approach for the 
design of complex and heterogeneous embedded solutions (hardware and software), from the 
concept to the silicon (or B2B, from the brain to bits). From the application point of view, the 
complexity of future multimedia devices is becoming too big to design monolithic processing 
platforms. This is where the hArtes approach with reconfigurable heterogeneous systems becomes 
vital. 

IEC 61508 
www.iec.ch 

The international standard to be considered when electrical/electronic/programmable electronic 
systems are used to carry out safety functions. The standard serves a dual purpose, first to enable 
application sector standards using IEC61508 as the basis, and to provide a standard for functional 
safety system for application sectors not yet adopting a safety standard. 

INTERESTED 
www.interested-ip.eu/index.html 

INTERESTED as an EU programme with aims regarding the tool-ennvironments that increase 
productivity when developing complex embedded systems.  

Among the project aims are to integrate the requirements of Major Tool Users of embedded 
systems tools to realize a reference and open interoperable embedded systems tool-chain, having 
in mind a broad socio-economic benefit for the European citizens, the performance of Embedded 
Systems generating long term societal benefits such as increased aircraft and transportation 
safety, reduced fuel and energy consumption and competitiveness of key European industries. 

ISAAC 
www.cert.fr/isaac 

Project ISAAC (FP6-2002-Aero-1-501848) builds upon and extends the results of ESACS that has 
shown the benefit of using formal techniques to assess aircraft safety. Our goal is to go a step 
further into the improvement and integration of safety activities of aeronautical complex systems. 
Potential benefits range from higher confidence in the safety of systems to increased 
competitiveness of European industries. 

ISO 26262 
www.iso.org 

The adapation of the functional safety standard IEC61508 for the automotive industry. 
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MARTES 
www.martes-itea.org 

MARTES (finished) (Model-based Approach to Real-Time Embedded Systems development)  

The aim of the MARTES project is the following: The definition, construction, experimentation, 
validation and deployment of a new model-based methodology and an interoperable toolset for 
Real-Time Embedded Systems development, and the application of these concepts to create a 
development and validation platform for the domain of embedded applications on heterogeneous 
platforms architectures. 

MISSA 
http://www.offis.de/projekte/v/225/missa_e.php 

Methodology and tools for formal linking between safety requirements on different design levels; 
MISSA project already planned to integrate their results in existing platforms like RTP 

Modelisar 
www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf 

Modelisar is a project that intends to support rapid control prototyping in the automotive domain by 
defining an interface between models of the automotive embedded system (includes AUTOSAR 
models) and the controlled system. 

ModelPlex 
www.modelplex.org 

MODELPLEX (MODELling solution for comPLEX software systems) is an IST project funded from 
call 2.5.5 and will last for 36 months. 

MODELPLEX will be driven by Industrial Use Cases ensuring the applicability and the integration 
of the different technologies produced by the academics and industrial partners. This approach will 
allow an iterative process where the technology providers will receive continuous feedback from 
the Industrial Use Cases implementer and benefit from a richer and immediate return on 
experience. 

MODELPLEX will define and develop a coherent infrastructure specifically for the application of 
MDE to the development and subsequent management of complex systems within a variety of 
industrial domains, where “complexity” is characterized by a combination of size, heterogeneity, 
legacy system management, dynamicity, distribution and autonomy of systems.  

Mogentes 
www.mogentes.eu 

The MOGENTES (1.1.2008 - 31.12.2010) project, EU FP7, has the goal to enhance testing and 
verification of dependable embedded systems by means of automated generation of test cases. 
The aims are to cover both functional safety and reliability aspects of embedded systems 
verification. 

OMG 
www.omg.org 

International organisation that amongst other activities develops standards for information 
interchange like UML, SysML, CORBA. 

OpenEmbeDD 
openembedd.inria.fr 

OpenEmbeDD is an Eclipse-based  "Model Driven Engineering" platform dedicated to Embedded 
and Real-Time systems (E/RT). 
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Its aim is to offer engineers who design and develop E/RT software the means to express, 
simulate, validate and test the targeted system before any component has solded on a circuit 
board. 

PREVENT 
www.prevent-ip.org 

PReVENT is a (finished) FP6 IP that focused on developing Advanced Driver Assistance Systems 
that help drivers avoid accidents by informing them about potential dangers, warning them if there 
is no reaction to the information and actively assisting or ultimately intervening if necessary. The 
project primarily addressed concept development but also some methodology. 

SAFEAIR II 
http://www.ist-
world.org/ProjectDetails.aspx?ProjectId=00c8e416d4af4a38ba774a4bec443b4a&SourceDatabase
Id=9cd97ac2e51045e39c2ad6b86dce1ac2 

SafeAir II will secure the leading edge ASDE (Avionics System Development Environment) tool set 
and its associated methodology developed in the IST SafeAir 1999-10913 project, while including 
relevant improved functionalities for end users and demonstrating dramatic cost effectiveness. 
Beyond SafeAir results, SafeAir II (finished) will result in a complete and coherent methodology 
and development framework to be customised in each industrial company involved in the 
embedded systems development, to be able to demonstrate the Y life-cycle in secure conditions. 

SAFEDOR 
www.safedor.org 

Safedor is a large FP6 IP (integrated project) ending in 2009, developing techniques for risk-based 
design of ships. A number of  sub-projects are developing methods for model-based safety 
analysis and optimisation of engineering systems on-board ship including programmable 
embedded systems. Techniques  and tools that underpin this work include HiP-HOPS, a 
dependabiliy analysis tool further developed in ATESST-2, and Simulation X, a simulation tool that 
implements Modellica. 

SAFESPOT 
www.safespot-eu.org 

Safespot is a FP6 IP with the objective to understand how intelligent vehicles and intelligent roads 
can cooperate to improve road safety. This is done by extending the time horizon for acquiring 
safety relevant information for driving, as well as to improve the precision, the reliability and the 
quality of driver information, and to introduce new information sources.  

SETTA 
www.vmars.tuwien.ac.at/projects/setta/index1.htm 

SETTA (finished) was a FP5 project on systems engineering of time-triggered-architectures. The 
application domain was safety-critical, distributed, real-time applications such as fly-by-wire or 
drive-by-wire. 

SPEEDS 
www.speeds-eu.com 

The IP SPEEDS (Speculative and Exploratory Design in Systems Engineering), an Eu FP6 project 
ending in Oct 2009, aims at providing a rich component model (HRC) for component based 
engineering, in particular providing multiple views for different engineering disciplines. SPEEDS 
builds on existing standards like SysML or AUTOSAR. It defines the modelling concepts, 
methodologies and analysis mathematics while incorporating them in an environment of 
commercial development tools. 
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SQUALE 
www.squale.org  

SQUALE (Security, Safety and Quality Evaluation for Dependable Systems), an open source 
project started in june 2008, sponsored by System@tic’s 5th Call for projects SQUALE defines a 
set of dependability assessment criteria covering all dependability attributes independent from a 
specific application domain. 

TIMMO 
https://www.timmo.org/ 

TIMMO is an ITEA2 project (ITEA 2 project 06005) that started in April 2007 and extends to 
September 2009.  

TIMMO is developing a common, standardized infrastructure for the handling of timing information 
during the design of embedded real-time systems in the automotive industry. This will shorten the 
development cycle and also increase its predictability. 
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Appendix B Industry activities 

This list describes industry activities in areas related to EAST-ADL2 scope. 

AUTOSAR – AUTOmotive Open System Architecture 
www.autosar.org 

The AUTOSAR standard will serve as a platform upon which future vehicle applications will be 
implemented and will also serve to minimize the current barriers between functional domains. It 
will, therefore, be possible to map functions and functional networks to different control nodes in 
the system, almost independently from the associated hardware. 

MISRA 
www.misra.org.uk 

Develops amongst other things standards for how languages are used in a safe way, MISRA C, 
MISRA C++ and MISRA SL/SF, which are de-facto standards for how software in the automotive 
industry should be written. 

SWAP 
www.vinnova.se/misc/VINNOVA-projekt/Projekt---Listhuvud/15534/ 

Project that aims at developing an application platform for Autosar compliant development. This 
development includes dedicated tools, hardware, Autosar compliant basic software and a test-
bench where an application of software components can be verified. 
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Appendix C Languages 

Open or standardized modelling languages that are currently used for designing real-time safety 
critical embedded systems: 

AADL (Architecture Analysis & Design Language) 
http://aadl.info  
AADL is developed by a Society of Automotive Engineers (SAE) sponsored committee of experts 
and was approved and published as SAE Standard AS-5506 in November 2004. AADL is designed 
for the specification, analysis, and automated integration of real-time performance-critical (timing, 
safety, schedulability, fault tolerant, security, etc.) distributed computer systems.  

ALTARICA --> Chen 
altarica.labri.fr 

ALTARICA is a Data-Flow modelling language that can be seen as a generalization of Block 
diagrams and Petri nets. It is based on the notion of mode automata that are finite states automata 
with inputs and outputs flows. It is a hierarchical where components exchange information by 
means of two mechanisms: flows that propagate values through the model and synchronization of 
events that forces two or more events to be simultaneous. 

BIP 
www-verimag.imag.fr/~async/bip.php 

BIP is a modelling language for concurrent systems that considers that components are the 
superposition of three distinct layers describing, respectively “Behaviour, Interaction and Priority”. 
Interaction involves synchronization between components behaviour with possible transfer of data. 

CCM 
www.omg.org 

The Corba Component Model, CCM, is an OMG standard designed for expressing distributed 
component based applications. 

ESTEREL 
www-sop.inria.fr/meije/esterel/esterel-eng.html 

ESTEREL is both a programming language, dedicated to programming reactive systems, and a 
compiler, which translates Esterel programs into finite-state machines. It is one of a family of 
synchronous languages, like Lustre or Signal/Polychrony, which are particularly well-suited to 
programming reactive systems, including real-time systems and control automata. Esterel is the 
kernel language for the Esterel Studio toolset developed by Esterel-Technologies. 

FIACRE 
www-sop.inria.fr/oasis/fiacre 

FIACRE is a French acronym for “Format Intermédiaire pour les Architectures de Composants 
Répartis Embarqués” (Intermediate Format for Architectures of Embedded Distributed 
Components). FIACRE is a formal intermediate modelling language to represent both the 
behavioural and timing aspects of systems –in particular embedded and distributed systems- for 
formal verification and simulation purposes. 

LUSTRE 
www-verimag.imag.fr/~synchron 

LUSTRE is a synchronous declarative language for programming reactive systems. It is declarative 
because a description is a set of equations that must always be verified by the program variables. 
A program variable in Lustre is considered to be a function of multi-form time: it has an associated 
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clock, which defines the sequence of instants where the variable takes its values. In that sense, 
Lustre belongs to the family of synchronous languages (like Esterel and Signal/Polychrony). 

MODELICA 
www.modelica.org 

Modelica is free available language specification for an object-oriented modelling language for 
large, complex, and heterogeneous physical systems. 

It is suited for multi-domain modelling, for example mechatronic models in automotive, aerospace 
and robotics applications involving mechanical, electrical, hydraulic and control subsystems. 

SPEEDS HRC 
SPEEDS HRC meta-model – called Heterogeneous Rich Components (HRC) – supports a design 
representation of electronic components based on several layers of abstraction. HRC components 
are conform to components of SysML and follow an assume/promise approach (so-called contract-
based approach) where each component has a black-box model, which explicates assumptions 
about its environment and state corresponding promises on the service offered by the component 
to the environment. The HRC meta-model definition provides a common meta-model, including 
different viewpoints (functional as well as extra-functional ones) with a system-wide rigorous formal 
semantics. 

SystemC 
www.systemc.org 

SystemC is a IEEE Standard 1666™-2005, it is a language built in standard C++ by extending the 
language with the use of class libraries. SystemC addresses the need for a system design and 
verification language that spans hardware and software. The language is particularly suited to 
model system's partitioning, to evaluate and verify the assignment of blocks to either hardware or 
software implementations, and to architect and measure the interactions between and among 
functional blocks. 

VHDL and VHDL-AMS 
www.eda-stds.org  

VHDL, VHSIC Hardware Description Language,, IEEE standard 1076 and derivative is commonly 
used as a design-entry language for field-programmable gate arrays and application-specific 
integrated circuits in electronic design automation of digital circuits. VHDL was originally developed 
at the behest of the US Department of Defense in order to document the behaviour of the ASICs 
that supplier companies were including in equipment. 

VHDL-AMS is a derivative of VHDL (IEEE standard 1076-1993). It includes analog and mixed-
signal extensions (AMS) in order to define the behaviour of analog and mixed-signal systems 
(IEEE 1076.1-1999). 

UML (Unified Modelling Language) and derivatives SysML, MARTE 
www.uml.org 

UML is a graphic modelling language structured on a meta-model defining the modelling elements 
(concept handled by the language) and the semantics of these elements (definitions and meaning 
of their uses). It is a formal language structured around three categories of diagrams: Structure 
diagrams, Behaviour diagrams, and Interaction diagrams (that can be considered as a sub-
category of behaviour diagrams). 

SysML is a modelling language based on version 2.0 of UML (Unified Modelling Language) 
developed to meet systems engineering requirements. SysML is not simply an UML profile. It 
comprises a subassembly of the UML 2.0 language (limited, to simplify its learning and 
implementation in the tools) and an extension of the UML 2.0 language, containing new structures 
and diagrams required for systems engineering. 
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MARTE is the UML profile for Modelling and Analysis of Real- Time Embedded systems. It 
provides support for specification, design, and verification/ validation stages. This new profile is 
intended to replace the existing UML Profile for Schedulability, Performance and Time (SPT). 
MARTE consists in defining foundations for model-based description of real time and embedded 
system for hardware and software. 

MARTE also provides features for performance and schedulability analysis. 
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Appendix D Tools 

A list of commercial, non-commercial and research tools that related to safety, architecture, 
AUTOSAR modelling of electrical systems. 

ARALIA 
www.arboost.com 

ARALIA which has been developed by Arboost based on technologies designed for ALTARICA, is 
a computation engine for Boolean risk assessment models (Fault Trees, Bloc Diagrams, Event 
Trees...) relying on the Binary Decision Diagrams technology. 

ARALIA is integrated in the ARALIA workshop and in the Cecilia OCAS toolset, which are both 
distributed by Dassault Data Service (see http://www.dassault-data-services.fr). 

ASCET (Advanced Simulation and Control Engineering Tool) 
ASCET, developed by ETAS is a product family for model-based design of embedded automotive 
software. As an authoring tool for ECU Software it is mainly used by function- and software-
developers in the automotive industry (OEM and supplier) to develop software for control-functions 
and -algorithms. The tool has a block-diagram style similar to Simulink, but is (as mentioned) 
tailored for the use in the automotive industry. From a safety point of view, the tool is quite unique, 
because ASCET's code generator is the first one, which is certified for the use in IEC 61508 SIL 3 
rated projects. 

AUTOSAR Tools 
www.vector.com 

The Tool Environment DaVinci supports the complete workflow for design, configuration, 
simulation, test and deployment of AUTOSAR compliant software for electronic control units. The 
Environment consists of the following modules: 

• DaVinci System Architect for the design of the distributed system. 

• DaVinci Network Designer for the network communication design and schedule definition. 

• DaVinci Developer for the application design and RTE (Run-time environment) 
configuration. 

• Microsar Configuration Suite for the configuration of the AUTOSAR basic software. 

www.dspace.com 

The following tools are provided from dSPACE for design, configuration and deployment of 

AUTOSAR compatible software: 

• SystemDesk for definition of the vehicle and software system architecture, 

• TargetLink with an AUTOSAR blockset for application design, 

• Tresos for the basic software configuration and generation of the RTE. 

http://www.artop.org/ 

The AUTOSAR Tool Platform (Artop) is an implementation of common base functionality for 
AUTOSAR development tools. Artop, including its source code, is available free of charge to all 
AUTOSAR members and partners. The Artop development process is transparent and based on a 
community approach driven by AUTOSAR members and partners. The community that develops 
Artop is organized as the Artop User Group. 

 

Doors 
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Doors is a commercial requirement management tool. 

Eclipse based tools 
www.openembedd.org 

OPENEMBEDD is an Eclipse-based "Model Driven Engineering" platform dedicated to Embedded 
and Real-Time systems (E/RT). Its aim is to offer engineers, who design and develop E/RT 
software the means to express, simulate, validate and test the targeted system before any 
component has solded on a circuit board. 

EPF Composer 

Used to document process-flows in TIMMO and Autosar. 

pure::variants 

www.pure-systems.com 

pure::variants is the tool to outline and manage efficiently all parts of software products with their 
components, restrictions and terms of usage. With this set of information and with the continuous 
tool support throughout the entire software configuration process valid solutions are created 
automatically from the choosen features.  

 

EXITE ACE 
http://www.extessy.com/?id=9fec65c63b007e50b906bff21c854729 

EXITE ACE is a framework for 

• Virtual integration and testing of systems of components, providing 

• Real-time and non-RT simulation supported 

• Distributed / cluster simulation 

• AUTOSAR component testing 

• MIL/SIL/HIL execution capabilites for Simulink, Targetlink, Dymola, Rhapsody, Artisan Studio, 
ASCET. 

GeneAuto 
www.geneauto.org 

GeneAuto is a toolbox for automatic code generation from a subset of Simulink/Stateflow ® and 
Scicos modelling languages to imperative programming languages (currently C easily extensible to 
Ada, C++, Java, C#...) compliant with safety critical system certification rules (DO178, ECSS…). 
The toolbox provides several elementary tools, which are used to build tool chains satisfying 
different kinds of constraints (traceability, resource use minimisation…). Some of the tools are 
developed using formal technologies in order to reduce the qualification costs for the tool chains. 

MODELICA based tools 
Several tools based on Modelica are available, for example, Dymola has been developed by 
Dynasim (see http://www.dynasim.se), and Mathmodelica by Mathcore (see www.mathcore.com) 

Ptolemy, Ptolemy II 
http://ptolemy.eecs.berkeley.edu/index.htm 

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded 
systems. The focus is on assembly of concurrent components. The key underlying principle in the 
project is the use of well-defined models of computation that govern the interactions between 
components. A major problem area being addressed is the use of heterogeneous mixtures of 
models of computation. 
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Scade 
http://www.esterel-technologies.com/products/scade-suite/ 

SCADE is a graphical modelling language that has been developed by Verilog (based on Airbus 
and Schneider Electric requirements), which has been bought by Telelogic and then by Esterel-
Technologies (see http://www.esterel-technologies.com). It is based on the Lustre synchronous 
model of computation. 

 

SIGNAL/POLYCHRONY 
www.irisa.fr/espresso/Polychrony 

SIGNAL/POLOCHRONY is an integrated development environment and technology demonstrator 
for computer-aided embedded software design. It is based on a synchronous multi-clocked model 
of computation implemented in the data-flow language Signal. The toolset consists of a compiler, a 
model checker and control synthesiser. 

Matlab/Simulink/Targetlink tools 
Matlab/Simulink, www.mathworks.com 

Commonly used language for behaviour definition in automotive systems development. 

Targetlink, www.dspace.com 

Tool chain with execution platforms with customizable hardware, target code generator using a 
subset of the Simulink blocks available. Often combined with simulation hardware for experimental 
vehicles enabling the verification of production models in real vehicles. 

EXACT, http://www.extessy.com/?id=3b7efa09444a31c5d58596e5bbf87d47 

EXACT is a test environment closely integrated with Simulink and Targetlink suitable for functional 
validation of components running model-, software- and processor- in-the-loop tests and code 
generator qualification. 

 

Scilab/Scicos 
www.scilab.org 

Scilab/Scicos is a graphical dynamical system modeller and simulator toolbox included in the 
Scilab ® engineering and scientific computation software. With Scicos you can create block 
diagrams to model and simulate the dynamics of hybrid dynamical systems and compile your 
models into executable code. Scicos is used for signal processing, systems control, queuing 
systems, and to study physical and biological systems. New extensions allow generation of 
component based modelling of electrical and hydraulic circuits using the Modelica language. 

SYNDEX 
www-rocq.inria.fr/syndex 

SYNDEX is a CAD software based on the AAA methodology (Algorithm Architecture Adequation). 
It allows specifying application algorithms and distributed architectures, as well as to perform their 
adequation by exploring manually and/or automatically the possible implementations while 
satisfying real-time constraints. It automatically generates the code corresponding to the chosen 
implementation. Suited for rapid prototyping it allows hardware/software codesign. 

SystemWeaver 
www.systemite.se 

SystemWeaver is a MBD software that allows the storage of design decisions, requirements and 
other system relevant data in a database. The information structure follows the system structure 
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used by the modeler rather. It uses a customer defined meta-model for the data, and makes 
versioning of all entities from systems to individual requirements possible. It allows for generation 
of specifications out of the information in the database according to user defined rules. 

Topcased 
www.topcased.org 

Topcased is a software development environment primarily dedicated to the realization of critical 
embedded systems including hardware and/or software. 

Topcased promotes model-driven engineering and formal methods as key technologies. Topcased 
is released as free/libre/open-source software by a group of partners from various organisations. 

Parts of Topcased are also included in OpenEmbedd previously described. Here is a list of 
components from Topcased Ganymede version (Topcased version 2, July 2008) useable in the 
context of ATESST2 project: 

- Model editors (UML2 editor, SysML editor, AADL editor, SAM editor, EMF editor, TOPCASED-
MF), 

- Model transformation features (FIACRE, SMUC, UML to C/Java/Python code generation, Model 
To Doc), model simulation and verification tools (TOPCASED Model Simulation tools, 
TOPCASED-VF, 

- Integrated development environment based on ECLIPSE (Cchecker, GNATBench) 

- Interoperability and transversal services (TOPCASED-Bus, plug-ins for remote tools connections 
to the TOPCASED environment, change management facilities, requirement traceability mean 
(TRAMWAY), configuration management (TVM))  


