
ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 1 (63)

Grant Agreement 224442

Advancing Traffic Efficiency and Safety through Software
Technology phase 2 (ATESST2)

Report type Deliverable D2.1
Report name State of practice and State of the art

Dissemination level PU
Status Final
Version number 1.0

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 2 (63)

Authors

Editor E-mail
Anders Sandberg, Mecel AB anders.sandberg@mecel.se

Authors E-mail
Martin Törngren Martin@md.kth.se

Martin Walker Martin.Walker@hull.ac.uk

Yiannis Papadopoulos y.i.papadopoulos@hull.ac.uk

Nidhal Mahmud N.Mahmud@2006.hull.ac.uk

Huascar Espinoza Huascar.Espinoza@cea.fr

Fulvio Tagliabò fulvio.tagliabo@crf.it

Sandra Torchiaro sandra.torchiaro@crf.it

Andreas Abele Andreas.Abele@continental-corporation.com

Lars-Olof Berntsson Lars-Olof.Berntsson@volvo.com

DeJiu Chen Chen@md.kth.se

Henrik Lönn Henrik.Lonn@volvo.com

David Servat David.Servat@cea.fr

Friedhelm Stappert Friedhelm.Stappert@continental-corporation.com

Matthias Biehl biehl@md.kth.se

The Consortium
Volvo Technology Corporation (S) VW/Carmeq (D) Centro Ricerche Fiat (I)

Continental Automotive (D) Delphi/Mecel (S)

Mentor Graphics Hungary (H) CEA LIST (F)

Kungliga Tekniska Högskolan (S) Technische Universität Berlin (D) University of Hull (GB)

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 3 (63)

Revision chart and history log

Version Date Reason
0.1 2008-11-13 Initial draft with outlines.

0.2 2008-12-04 Outline with editor input requests

 2008-12-10 Added: List of Abbreviations
Enhanced: Section 1.1 by electronic control systems
References formatted as numbered items, to be insert in text via
Insert->Reference->"Cross-references …"

 2008-12-11 Minor additions and updates.
Text added for section 2.2, 3.1.1 and 3.1.2

 2008-12-18 Sections 3.1.3.1 (safety analysis) 3.1.6.2 (optimisation) incorporated
in version …V0.1. by UOH (as requested by editor)

 2008-12-18 Section 3.1.6.1 incorporated in version …V0.1. by CEA

 2008-12-18 Sections 3.1.3 & 3.1.6 edited by UOH

 2008-12-19 Section 2.3 (CRF input: State of practice from the automotive
industry)

0.3 2008-12-19 Section 3.1.3.2 (ISO 26262 adoption)

0.4 2008-12-20 Section 3.1.4: Text from Mark-Oliver Reiser added.

 2008-12-21 Updated complete reference scheme. All items in reference are
numbered as “seq bibitem”. All are given a bookmark and are
consequently used using “seq bibitem bookmarkTag” in the text.

 2009-01-19 Updated CON_AA distribution

0.5 2009-01-20 Integrated HL contributions

Added tasks added at M2

 2009-01-26 Conclusions: UOH added part of conclusions regarding sections on
safety analysis and optimisation

0.9 2009-01-26 Updated several sections, removed most revision marks.

Added figure 2

Added initial text in the Conclusions section

Updated project, languages, tools section.

 2009-01-26 UoH: removed redundant text from concluding parts of sections 3.1.3
and 3.1.5. Most of this is now discussed in conclusions

 2009-01-29 UoH: Added introduction to 3.1.3 and two more references to
Autosteve and AutoFMEA (Ricardo) tool

 2009-01-29 KTH: Added Section 4

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 4 (63)

List of abbreviations

ABS Anti-blocking System

ECU Electronic Control Unit

EDS Electronc emulated differential lock

EMS (Combustion) Engine Management System

ESC Electronic Stability Control

ETC Electronic Throttle Control

HIL Hardware in the loop

RAP Redundancy Allocation Problem

SIL Software in the loop

TCS Traction Control System

TCU Transmission control unit

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 5 (63)

Table of contents

Authors ...2

Revision chart and history log ..3

List of abbreviations..4

Table of contents ..5

List of Figures ...7

1 Introduction...8

1.1 Characteristics of Automotive Embedded Systems ...8
1.2 Model based development ...12

2 State of practice in E/E system development in the Automotive industry. ...14

2.1 E/E system modelling and tool support ..14
2.2 Model based software development...15
2.3 Example of state of practice from the Automotive industry. ...17

3 State of the art efforts related to the EAST-ADL2.0 work ..19

3.1 Language concepts ..19
3.1.1 Structure modelling concepts ...19
3.1.2 Behaviour modelling concepts ...19
3.1.3 Safety modelling and analysis..21
3.1.4 Product family and variability modelling ...28
3.1.5 Analysis-Driven Architecture Evaluation and Optimization ..29

3.2 Meta-modelling languages ...33
4 EAST-ADL2 in the context of various evaluations and classifications of ADL...37

4.1 Introduction...37
4.2 A Classification Framework for ADLs...37

4.2.1 Components ...37
4.2.2 Connectors ...37
4.2.3 Configurations ..38
4.2.4 Tool support..39

4.3 Evaluation of EAST-ADL ..39
4.3.1 Components ...39
4.3.2 Connectors ...40
4.3.3 Configurations ..40
4.3.4 Tool support..41

4.4 Conclusion..42
5 Conclusions ..43

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 6 (63)

6 References ...46

Appendix A Research and standardization activities...50

Appendix B Industry activities ..56

Appendix C Languages..57

Appendix D Tools ...60

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 7 (63)

List of Figures

Figure 1 AUTOSAR basic software structure.. 10
Figure 2 ISO26262 standard structure. ... 28

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 8 (63)

1 Introduction

The introduction will look at challenges identified in the development of Automotive Embedded
systems and how they address the following aspects of development.

• Managing system and design complexity

• Simplifying safety assessment and improving safety

• Achieving successful tradeoffs between quality requirements and cost

A background to how embedded systems have emerged and increased in complexity is presented
as it provides a good background to what the challenges emerge from.

1.1 Characteristics of Automotive Embedded Systems

Automotive embedded systems have evolved enormously over the past decades. For example, the
first commercial anti-brake locking system (ABS) of Bosch was introduced by Mercedes in 1978.
The ABS system improves the braking performance and is today a standard feature in the
automotive industry. The system was first presented in 1970 but at that time the available
electronics could not cope with the ABS requirements delaying the commercial introduction by 8
years.

To further illustrate the dramatic introduction of computer based embedded control, consider the
fact that a Mercedes car in 1986 contained six microprocessors; these were implemented as six
stand-alone controllers (in the automotive industry these are referred to as ECUs, standing for
Electronic Control Unit). In 1998 a corresponding Mercedes car contained some 60
microprocessor systems, together forming a distributed system including four networks (not to
mention in addition some 113 electrical motors!).

In Engine Management Systems µCs has been used to control the engine purely by electronics.
This was the first by-Wire system, which also triggered Safety topics. To clarify those topics the E-
GAS Arbeitskreis has been founded in (~1997). Members of the E-GAS AK are German OEMs and
some Suppliers.

Time table:

• 1986: Electronic Diesel Control BMW 524td

• 1994: SOP of the ETC70 system for BMW 850i 12 cylinder V engine

• 1996: electronic throttle control integrated in one ECU together with EMS at GM

• 1999: Engine management systems for VW and Audi with predecessor of torque structure

• 1999: Torque Structure at Daimler

The torque structure is also important from architectural view: It was one layer performing an
overall coordination to do a consistent actuator control, here the throttle, injection and ignition.

The torque structure was mandatory to provide an (external) torque interface, which is used for
TCS, EDS, and ESC.

The introduction of computer based embedded control has been driven both from the technical
viewpoint, that of improving performance or introducing entirely new functions, and by market
demands. At the same time the costs for development of electronics of which the vast part is
software development increases dramatically, and today it is reaching about 40% of total costs
with a tendency for further increase.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 9 (63)

A typical example of an automotive embedded system is shown in Fig. 1, illustrating the electronic
architecture of the Volvo XC90. The boxes in the figure represent Electronic Control Units (ECUs)
and the lines represent communication networks. The intent of the figure is to show the complexity
rather than the details. The maximum configuration contains about 40 ECUs. They are connected
mainly by two CAN networks, one for power-train and one for body functionality. From some of the
nodes, LIN sub networks are used to connect slave nodes into a subsystem. The other main
structure is a MOST ring, connecting the infotainment nodes together, with a gateway to the CAN
network for limited data exchange. The different networks illustrate the typical automotive domains,
including vehicle dynamics control (left network, characterized by strict real-time requirements and
safety related motion control), body electronics (including door control, climate control and
instrument cluster), and infotainment and telematics. Through this separation, the more critical
power-train functions on the CAN network are protected from possible disturbances from the
infotainment system.

The diagnostics access to the entire car is via a single connection to one ECU. The figure shows
approximately how the ECUs are placed in various locations in the car. The partitioning of
functionality is decided by the location of the sensors and actuators used, but also by the
combinations of optional variants that are possible. If a vehicle is sold with only a subset of the full
functionality, the amount of physical hardware installed should be limited to the minimum
necessary.

Many of the ECUs of a modern vehicle are provided by external suppliers, who work with many
different vehicle manufacturers (or OEMs, original equipment manufacturers), providing similar
parts. The role of the OEM is thus to provide specifications for the suppliers, so that the component
will fit a particular vehicle, and to integrate the components into a product. Traditionally, suppliers have
developed physical parts, but in modern vehicles they also provide software. As the computational
power of the electronic control units (ECUs) increase, it will be more common to include software from
several suppliers in the same nodes.

The current development trends in automotive software call for increasing standardization of the
software structure in the nodes. The need to integrate software from different suppliers, supporting
dependable real-time execution, and managing changes all call for a well-defined structure. The node
architecture (see Figure 1) includes several important parts.

Diagnostic kernels provide an implementation of the diagnostic services that each node must
implement to act as a client towards the off-board diagnostic tool. It relies on the communication
software to access the networks and on the operating system to schedule diagnostic activities so
that it does not interfere with the application functionality. Network communication software
provides a layer between the hardware and the application software, so that communication can
be described at a high level of abstraction in the application, regardless of the low-level
mechanisms employed to send data between the nodes. Real-Time Operating Systems (RTOS)
provide services for task scheduling and synchronization.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 10 (63)

Figure 1 AUTOSAR basic software structure
All these components interact with each other and with the application, and must therefore have
standardized interfaces, and at the same time provide the required flexibility. To minimize the use
of hardware resources, the components are configurable to only include the parts that are really
necessary in each particular instantiation.

For future system development, an important aspect is to create a more flexible software
partitioning. The main use for this is probably not to find the optimal partitioning for each car on a
given platform, since that would create too much work on the verification side, but to allow parts of
the software to be reused from one platform to the next. This puts even higher demands on the
node architecture, since the application must be totally independent from the hardware, through a
standardized interface that is stable over time. Therefore, further standardization work is pursued
within the AUTOSAR initiative [1].

Figure 1 shows the configurable layer of reusable software components making up the basic
software in the AUTOSAR specification structure. The remaining parts of software in such a
system is a ‘signal database’ layer called RTE that handles the main transfer of signals either
between Application Software components (SW-C) that provide the functionality in such a system
or from Basic Software (BSW) to SW-C. This structure enables the transfer of SW-C between
ECU’s as more strict definition of interfaces is required. It also enables the possibility to evaluate
system effects when a SW-C is moved from one ECU to another as the dependencies on BSW
can be estimated by the medium of the data transport.

Cars are typically manufactured in volumes in the order of millions per year. To achieve these
volumes, and still offer the customer a wide range of choices, the products are built on platforms
that contain common technology that has the flexibility to adapt to different kinds of vehicles. As an
example, the Volvo XC90, which appeared in 2002, is based on the same platform as four previous
Volvos launched since 1998.

Automotive embedded systems are further characterized by the following:

• Users
In contrast to many other advanced machines, such as airplanes and medical devices,
automotive products are utilized by all us. This has an important impact on the usability,
service and dependability required of the products.

• Dependability requirements
Automotive embedded systems have a fairly long life time and users expect the vehicles to

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 11 (63)

function over extended periods of time, leading to strict requirements on reliability,
availability and maintenance. Automotive control systems are safety related. Not only is the
control system required to operate reliably; the design of the system and its context must
be carefully analyzed to consider what might go wrong, and what the system should do in
such cases. In addition, security is becoming of increasing importance because of the
possibilities and relative ease with which embedded control systems behaviour can be
modified, e.g. by replacing memories/chips or by network intrusion.

• Heterogeneity
As depicted by Error! Reference source not found., automotive embedded systems are
heterogeneous. They handle many different types of tasks with widely varying
requirements. For example, the motion control related ECUs include functionality that can
be characterized as hybrid systems, being composed of components that are best
described by continuous- and discrete-time dynamic systems and finite state machines.
Motion control is one central part of ECS. Although it’s absolute size e.g. in terms of lines of
code typically is relatively small compared to other functionality, the motion control
functionality is coming along with real-time constraints, environment dependencies, and
safety criticality. To handle this heterogeneity the embedded systems are normally
structured into a system platform and applications, each with their own hierarchy in order to
facilitate changes and reuse. Responsibilities of the system platform include for example
logging, communication services and drivers for sensor readings. For the application there
will be activities such as motion control, estimation of the environment state, and human
machine communication.

• Real-time constraints
These constraints arise due to interactions with the environment. From control system
specifications, for example referring to required speeds of motion, the timing requirements
on the embedded control system can be derived. The speed (or bandwidth) of the closed
loop system will provide requirements on the timing of the controller, including the sampling
periods and delays that can be allowed. These properties can also be taken into account in
the control design, however, providing an additional dependency between the controller
and its implementation.

• Resource constrained implementations
Automotive embedded systems are often highly resource constrained because of the large
series being produced. In such applications, tradeoffs between the system behaviour
(quality of service) and the resources required (processing, memory and power) is
essential.

• Distributed systems
There has over the last decades been a strong trend to connect standalone controllers by
networks, forming distributed systems. Another and closely related trend has been
modularization, where for example, an electronic control unit is physically integrated into an
engine, forming a sort of mechatronic module. Combining the concepts of networks and
mechatronic modules makes it possible to reduce both the cabling and the number of
connectors, the result of which is facilitated production and increased reliability. Distributed
control systems first appeared in process control, and later in the 80s in aerospace, and in
the 90s in the automotive industry. Distributed systems are characterized by the mapping
problem, i.e. the need to assign functions to different nodes of a distributed system, to
define the tasks of the system, and their implementation in software and/or hardware.

• Complex development structure
Todays electronic systems are developed in a complex design environment. It is rare to find
systems that are disconnected from other system in the vehicle. To some extent dynamic
control has survived this change but for driver assistance systems the reality is that a
system is defined at one organisational entity at the OEM but the actual development is
done in parallel at several parts of an OEM organisation and likewise in parallel at several

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 12 (63)

Tier1 organisations delivering components to the vehicle builds. This puts tough
requirements on how design decisions and requirements are organised, updated and
distributed. To both give necessary details to all involved parties but also hide component
related data to other component suppliers in the system.

• Co-operative systems
An emerging set of systems are systems where the environment or individual vehicles
affect the behaviour of other vehicles autonomously. These systems require new methods
to model, test, simulate and validate in order to make them reliable in a automotive
environment.

• Tight coupling to the environment
The tight coupling between the control system and the controlled process is manifested in
several ways. Apart from aspects related to physical integration and protection against a
harsh environment, the control system is also fundamentally related to the controlled
process. Typically, models of the environment are used in control design. In many cases,
the control algorithms are synthesized from a validated model of the controlled system. In
other cases, the controller parameters are tuned based on the overall system behaviour.
For control systems this creates a dependency between the environment and the control
system, creating a kind of contract between these two entities. Another type of environment
coupling exists with humans interacting with the embedded control system. A driver “in the
loop” is typical for vehicular systems. The situation arises where conflicts can occur – who
is deciding the motion of the vehicle at any given point in time? Careful analysis is required
and special care has to be given to the human/machine interface.

• Parallel activities and triggering
Since the real world is truly parallel, there is typically a need to describe and handle several
parallel activities. A typical control system normally includes both time- and event-triggered
activities. In many cases, time-triggering follows naturally from the development of discrete
time (sampled data) functions. However, in other cases the controlled process can be
inherently event-triggered. This is the case for inherently sampled systems, one example
being control of injection in a combustion engine; the point in time of injection depends on
the speed and angular position of the engine parts. Event triggered functions thus include
those who are inherently sampled and other functions who are not dictated or preferably
implemented as periodic activities.

• Field operational tests
To validate functions the norm is to use as many forms of testing as possible. For user
functions one common form is to use field-test vehicles where development vehicles are
given to external users for prolonged periods. One big problem with these trials is result
feedback and data gathering during the trials.

All in all, the use of embedded control systems has paved the way for large improvements of
machinery in terms of enhanced performance, flexible tailoring of product variants, and the
introduction of completely new functionality such as for active safety control in vehicles. As a
consequence product complexity is becoming a crucial issue in system development. Systems
integration is today a serious problem in the automotive industry. This increased product
complexity calls for more mature engineering approaches including the use of model and
component based development.

1.2 Model based development

It is well known that increased system complexity requires increasing abstraction levels for humans
to deal with and develop such systems. The essence of model based development has the aim to
provide:

- formalized descriptions providing abilities for automated analysis and synthesis

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 13 (63)

- abstraction capabilities and graphical representations, facilitating communication among system
stake-holders

- possibility for reuse of designs, and of analysis and synthesis capabilities

- the basis for improved solution space exploration, verification and validation

Model based development is common practice in mature domains such as mechanical engineering
and control engineering, and supported by computer aided engineering tools. Even though the
practice is advanced there are still limitations. For example, in control engineering, the formalized
descriptions deal primarily with control system behaviour in terms of steady-state and transient
behaviour of sets of coupled differential equations. There is little, or much less concern, with issues
such as implementation oriented structuring (e.g. how to partition algorithms into software
modules) and how the hardware/software implementation will affect the control system behaviour,
e.g. due to time-varying end-to-end delays and transient hardware faults.

The situation in software engineering is less mature. For example, there are companies and
suppliers in the automotive industry that are certified for SW-CMM [2] level 3 but the maturity of
software development in automotive industry has just about reached the lowest two levels of the
SW-CMM. The use of software is not new in the automotive industry but the ability to consider
networked systems with a proper process is still in its infancy.

Model based development of software is therefore an evolving area with many research efforts in
place (see section 3 for an overview).

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 14 (63)

2 State of practice in E/E system development in the Automotive industry.

This section provides an introductory overview of model based development practices in the
automotive industry. The overview is not complete but has the intention to provide representative
snapshots to illustrate the widely varying state of practice and industrial needs. The interested
reader may refer to for example [4] and [3] for more snapshots.

2.1 E/E system modelling and tool support

In general, development practices vary to a great extent over different companies, and across the
automotive domains. This is not surprising because of the heterogeneity of the automotive
embedded systems, as described in Section 1.1. While some domains are characterized by model
based approaches supporting the development, other domains still mainly rely on written
documents for specifications and hand-written code for software development. Although some
analysis is possible on the code level, this level is not suitable for communication among
developers and does not support early analysis and design. A particular complication and
challenge is provided by the differences in traditions and also characteristics among the domains.

An essential facet of the characteristics is the differing models of computation, represented by
closed-loop control in vehicle dynamics (continuous and discrete-time dynamics) and logic/state
machines in e.g. body electronics (discrete event dynamic systems).

For control systems development in the automotive industry, model based development is in many
areas already the standard design approach; however, the adoption and extent varies between
different companies and subsystems. CAE tools supporting modelling, simulation and rapid control
prototyping (RCP) largely facilitate development even without available mechanics and electronics
hardware, and provide means for control system verification and validation, in the lab, as well as
in-vehicle [5].

Companies with more mature processes utilize tool chains typically starting from functional design
(e.g. using Matlab/Simulink/Stateflow), using rapid prototyping (through code generation and
prototyping hardware), software in the loop simulation, production target code generation, and
reuse of plant models in hardware in the loop simulation. Less advanced companies still tend to
use e.g. Matlab/Simulink, but with no or little connection to the embedded systems implementation.

Model based verification is becoming increasingly used, where one example is the use of
hardware in the loop simulation for both subsystem as well as system integration testing. In a
hardware-in-the-loop simulator, the computer control system environment (i.e. the vehicle, road,
driver actions as well as other relevant environment entities) is simulated in real-time, enabling
system testing. With this approach automated testing can verify hundreds of test cases without
user interaction and provide reports on the results. For active safety systems it is also possible to
try dangerous or destructive scenarios over and over again without risking personnel. There are
limitations though, as the sensing system irregularities and other effects where the real-world
system would provide non-ideal data is not taken into account.

In order to perform software in the loop and hardware in the loop, for both integration and
verification, it is mandatory to model the control path. This needs to be done in close relation to the
dedicated functionalities. To do such system spanning tests in an effective way, an architecture
definition is needed, e.g. vehicle partitioning.

However there are also control domains, such as automotive engine control, which rely heavily on
look-up tables and calibration of systems for control purposes – i.e. with little tradition of model
based control. However, look-up tables are also used to avoid high computation load at runtime.
The values in the look-up tables are determined offline, for example by using Matlab / Simulink /
Stateflow.

With respect to software modelling, the use of the UML has been slowly increasing. However, the
collected experience of the consortium is that the use of the UML is not widely spread for

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 15 (63)

automotive embedded systems. Subsets of UML are used for certain dedicated purposes, mainly
involving documentation (e.g. use-cases, MSCs). There are also cases where the use of UML tools
is more elaborated including code generation and model level debugging.

The introduction of tool chains supporting model based control engineering is not unproblematic
and is strongly related to and affected by organization, process and technology constraints.

Introducing tool chains causes a reliance and dependence on particular tool vendors and requires
training of personnel. For OEMs, transitioning from specification of control systems to actually
implementing them is a large step and has many implications including maintenance of in-vehicle
software and possibly also a larger responsibility. On the other hand, it gives the OEMs better
control of vital vehicle functionality.

Many OEMs only specify control systems that are in turn developed by subsystem suppliers (for
example; e.g. BMW top models have some 60 ECUs where most are developed by some 30
subsystem suppliers). Increasingly, models such as Simulink diagrams are used in the
communication between organizations.

Today, there is consequently a strong need for standardized ways of

• describing automotive embedded systems, to support communication

• managing the information involved in automotive embedded systems development and
integrating the disparate sources of information, e.g. represented by UML, Simulink and
safety analysis models, capturing different aspects of the system to be developed

• supporting control engineering, software issues and implementation in embedded
distributed computer systems

• supporting various types of formal analysis techniques from different disciplines.

2.2 Model based software development.

Model based design (MBD) and automatic code generation are used for software development at
vehicle manufacturers. For some years now, OEMS have used modelling to develop vehicle
functions. Model-based approaches are systematically applied to the series currently in product
development; the number of functions to be integrated is constantly increasing. Some of the
functions developed comprise the entire ECU application software.

In each development cycle, the supplier is given the OEMs requirements and test information, that
the supplier is responsible for producing software for the model, and implementing it on the ECU.
At present, when functions are created via modelling, suppliers still have a high manual workload
when integrating them into the ECU [9]. The amount of work involved greatly depends on the
software architecture used by each supplier, even when the OEM has specified the
communication part of the basic software. In some cases, the software architecture has to be
adapted or specially extended. There is no completely standardized software architecture, so
sometimes extensive coordination meetings have to be held with specific suppliers.

The need for coordination goes beyond just the software architecture. The OEM and the supplier
also have to jointly define the description of metadata for integrating functions, such as the
interface list for the functions, and the mapping of application signals to bus signals. Thus, the
prerequisites for broader and process-safe use of model-based development are a uniform,
supplier independent software architecture, and a standardized description of the metadata.

The AUTOSAR standard [1] defines software architecture for ECUs, an integration method, and
the interchange formats that these require. In other words the AUTOSAR standard [1] largely
addresses the requirements for the process-safe integration of model-based functions described
above. AUTOSAR divides the application software of an ECU into several software components
(SWCs), which communicate with one another via middleware (RTE). SWCs encapsulate the
software and give it type definitions, allowing data exchange only via well-defined interfaces. Two

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 16 (63)

mapping steps are needed for integration on an ECU: first the SWC instances are mapped to
ECUs, and then the data elements are mapped to network signals for communication across
ECUs.

For the development of next generation software platforms, many OEMs are taking the first steps
towards AUTOSAR architectures. The introduction process starts with AUTOSAR software
architectures and works it way down. This will involve systematically dividing the software
architecture into application parts and basic software parts, which will communicate via a defined
interface. The base for defining this interface is the AUTOSAR standard. In this first step, the
standard software is often based on the established OEMs core, to which selected AUTOSAR
software services are added. In this early phase, the ECUs developed in this way will still be
network-compatible with ECUs developed by a classic method. This means that AUTOSAR
technology very often is introduced step by step.

With AUTOSAR, modelling is often performed at two levels [6]. Beside the behaviour level, where
the behaviour of the functions is modelled, there is an architecture level where the interfaces of
the SWCs and their connections have to be formally described. In a top-down strategy, when new
vehicle functions are developed, it is useful to first subdivide their functionality into several SWCs,
and then to define their interfaces at architecture level. The behaviour of the resulting SWCs is
modelled. For previously existing function models, a bottom-up procedure can be used to
generate the the SWC descriptions from the model interfaces. The resulting SWCs are then
connected with one another at architecture level.

Stepwise introduction means that it is not possible to produce a complete top-down design of a
whole vehicle. It also means that at the level of single ECUs, not all functions are initially available
as models. An iterative strategy has therefore provided useful.

The resulting SWCs are collected together in a composition at architecture level and networked
with one another. The remaining unconnected ports are led through to the outside, which turns
them into ports in the composition. The ports now represent the communication interface of the
ECU. Data elements referenced via the ports can be mapped to the signals specified for the ECU
by the communication matrix. This makes it possible to create the SWC structure of an ECU at a
reasonable cost.

AUTOSAR is answering a longstanding need to standardize the description formats, and
interfaces for model-based function development. The type-safe AUTOSAR descriptions make it
possible to ensure consistency between separately developed function models at the very early
stage in the development process, when the OEM hand over the function models to the ECU
supplier. The expectation is that this will make the function integration by the supplier much more
efficient. Coordination meetings held between the OEM and the supplier to discuss software
architecture are considerably more productive because both sides can use terms that are
standardized by AUTOSAR. The current necessity of using two development tools (for modelling
behaviour and for describing interfaces) in developing AUTOSAR compliant function networks
poses new challenges, as each system has to be divided into manageable and logically useful
software components. In the future, the transition between different modelling tools, often from
different vendors, will have to be made more efficient to ensure a “round trip”. Moreover, the
current division of AUTOSAR development environments, into tools for architecture modelling and
system integration, and tools for behaviour modelling with their own auto coders, is to a large part
due to the tool domains. This limits the potential for tool-independent system modelling and
resource optimization. Architecture and design decisions therefore need to be thought through
carefully at the outset. Because the AUTOSAR descriptions are so extensive, and because
individual tools do not yet provide complete equivalents, developers have to begin by deciding on
a subset of the standard via suitable application profiles [6].

The definition of the AUTOSAR standard is not yet complete. Close cooperation with the
standardization groups, research community and tool manufactures is a necessary to ensure that
investments made in converting to AUTOSAR are future-proof.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 17 (63)

2.3 Example of state of practice from the Automotive industry.

The activities related to the Safety are directly integrated into the normal RAM(S) tasks, there isn’t
a specific safety design flow. Usually are applied the classical RAM(S) concepts, coming from
functional analysis, for the system reliability.

These analysis are performed especially thanks to the data (feedback) acquired on field.

To perform these types of analysis, the techniques usually used are PHA (Preliminary Hazard
Analysis) the FMEA (Failure mode and Effect Analysis) and the FTA (Fault Tree Analysis).Test
benches, whether SIL (Software In the loop) or HIL (Hardware In the Loop), are developed to verify
the specifications’ coverage and to validate the system. Furthermore, fast prototyping instruments
and tool chain as Matlab/Simulnk/StateFlow are used to support these kinds of analysis.

The introduction of new standards (ISO 26262, IEC61508,..) is forcing to introduce new formal or
semi-formal methods to manage the requirements and specifications, allowing a more controlled
approach for system verification and validation.

As mentioned in section 1.1 the state of practice development is as heterogeneous as the different
systems or domains. In the different domains, the above mentioned tools are applied. In order to
have an efficient internal work flow and in order to reach requested quality standard (like CMMi[2],
AutomotiveSpice[6]), several processes are defined and consequently applied. The following
statements are valid for the application development.

• Powertrain:
Engine Management systems:
Function development and architecture development is separated. A System is partitioned
into several hundreds modules. Often used modules are grouped into bigger, configurable
packages. An EMS consists of several 10s of those packages. By performing such a
packaging, the number of interfaces is reduced significantly.
Transmission control systems:
Compared to EMS the functional content of TCUs differ quite strongly, therefore a
customer specific clustering is done.

• Chassis:
Basic Brake Systems:
Main focus in the development is on constructive side, but not electronics
Higher level Brake functions:
Those functionalities are strongly realized by using electronics and dedicated software. At
top level a separation into modules is done.

Basic Brake and higher level brake functions are developed and verified using SIL and HIL.

Further chassis systems, like suspension damping control, steering control are developed
customer specific.

• Active Safety Systems
These use actuators provided through the Powertrain and Chassis systems. In additions
powerful sensor systems enabling functions like Collision Mitigation by Braking are added
to the vehicle architecture. As for Chassis systems, Active Safety systems use SIL and HIL
during the function development. At VDI’s Electrinic in Fahrzeug fair 2007 Audi showcased
examples of support architectures for function development. As the basis for active safety
functions are control this method is well suited for the purpose. For the sensor system there
is more reliance on implementation efficiency and application specific hardware. In some
sense this work is generic but it is often necessary to adapt the sensing system
functionality for the function flora that uses the sensor system output.

• Body and Interior:
The functional content and also the modelling strongly varies, depending on the customer.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 18 (63)

In some projects an autocode generation using TargetLink, based on Simulink/Statemate
models is performed.

• Infotainment systems
The functional content is more limited than the above and more standards are available,
MOST[10] being one, Bluetooth profiles[11] being another that enables partitioning of
systems. Attempts are made to support the verification process by using model based
definition of behaviour using UML sequence charts and derive test cases from these. Model
based development is limited as the target platforms are typically combinations of DSP and
normal processors making low-level MBD difficult.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 19 (63)

3 State of the art efforts related to the EAST-ADL2.0 work

3.1 Language concepts

This section describes the current state of the art in the themes guiding the work in the project.

3.1.1 Structure modelling concepts

Model based development for embedded systems, and in particular automotive systems can be
supported in various ways. The AADL is a modelling language dedicated to embedded systems
with its roots in the aerospace domain. Compared to the EAST-ADL2 and AUTOSAR combination
it covers parts of this scope. However, because of its overlap with AUTOSAR on the software
architecture level, and the lack of complementary abstraction levels it does not provide an
appropriate structural framework for automotive systems development. Also, the support for
feature modelling, requirements and variability is unique for EAST-ADL2.

The AUTOSAR approach to structure modelling is based on a component hierarchy with ports and
connectors. Ports are typed by an interface which may have several data elements (for data flow)
or operations (for client-server). The component hierarchy is clearly defined through a type and
prototype pattern. AUTOSAR also solves the problem of referencing specific instances of reused
components by means of the InstanceRef construct. For example, if a specific component
somewhere in a hierarchy is allocated to a specific ECU, the InstanceRef construct includes the
hierarchy path to the component, to avoid that all components of this type are allocated on the
same ECU.

SysML and MARTE are UML profiles that augment plain UML with constructs for systems
engineering and embedded real-time systems modelling, respectively. Both approaches, and even
plain UML are useful tools in automotive development and EAST-ADL2 has integrated some of
these concepts, for example requirement concepts from SysML and timing constructs from
MARTE. The general structuring approach found in SysML based on blocks and ports is generally
highly appropriate and applied in EAST-ADL2.

What is not present in any of these approaches is the concept of abstraction levels and a model
structure tailored for automotive use through several lifecycle phases. The EAST-ADL2 structure is
a framework that both supports the modelling needs and guides modelling in a way that improves
model exchange and understanding between stakeholders.

3.1.2 Behaviour modelling concepts

In EAST-ADL2, behaviour modelling relies on the definition of a set of elementary functions that
are executed based on the assumption of synchronous run-to-completion execution (read inputs
from ports, compute, and write outputs on ports). This was chosen to enable analysis and
behavioural composition and to make the function execution independent of behavioural notations:
inside each function, the data transformation can be described according to various languages and
paradigms, and various legacy tools including general UML tools and domain-specific tools (e.g.
Simulink, ASCET).

Functions own an “ADLBehavior” that is refined in “ExternalBehavior”, when definition is made in
external tools (e.g. Simulink, ASCET, etc.) and “NativeBehavior”, when definition is made with pure
EAST-ADL2 constructs.

3.1.2.1 Native behaviour:

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 20 (63)

“NativeBehaviors” are mapped directly to UML “Behaviors” such that “StateMachines”, “Activities”,
or “Interactions” – depicted as sequence diagrams – can be used w.r.t to modelling needs.

An important aspect of the definition of native behaviour is the relationship between behavioural
models and composite structures. This was tackle in a pragmatic fashion during ATESST1: the
application of EAST-ADL2 stereotypes on UML behavioural concepts alters UML2 semantics such
that among other things, triggering policies and run-to-completion assumption hold (see deliverable
[12]). A recent paper accounts for this issue in a more general and fundamental fashion [13]. The
authors show that very few in-depth studies of UML2 composite structures have been published,
resulting in misinterpretations and ambiguities on composition mechanisms and propagation
semantics of ports. References of up-to-date research in this field are provided and an alternative
approach to the use of stereotypes is advocated: rely on the definition of explicit behaviours on the
ports of the composite structures, so that delegation schemes, unexpected requests among other
things are properly identified.

3.1.2.2 External Behaviour:

Off-the-shelf tools for behavioural modelling like SCADE, ASCET, Simulink, etc. all support model
based development with analysis and synthesis to various degrees. It is not probable that a single
tool will be used for an entire vehicle development project, but model integration is necessary.
EAST-ADL2 supports this aspect by allowing external representation of behaviour and concepts
for integration with requirements management tools.

“ExternalBehaviors” are mapped to the UML “OpaqueBehavior”, which features both a language
and body attributes (holding references to the type of external tool and language used, e.g.
Simulink, ASCET, etc.).

3.1.2.3 Continuous-time systems modelling at different realization levels

Continuous-time behaviour is foremost needed to describe the controlled system, i.e. the plant
model. It is also possible that control functions, e.g. PID control, can be described using
continuous-time functions at the functional analysis abstraction level.

A typical continuous model of a plant system is described using one or many systems of
constraints. Typically the plant has dynamics, which means it can be described using differential
equations (DE:s), or differential algebraic equations (DAE:s).

Models of continuous-time systems can, like embedded systems, have different levels of
abstraction. Since the expression abstraction level is reserved in EAST-ADL2, they are called
realization levels. These realization levels were created to provide answers to such questions as:

• What is the behaviour of Simulink models?

• What is the behaviour of Modelica models?

• How is it possible to connect acausal and causal systems?

3.1.2.3.1 Acausal models

An acausal model is a model where the behaviour is represented as equations, or constraints. The
word acausal could be misleading, since it is a negative definition (i.e. models not being causal).
An acausal model should rather be seen as a set of equations, or constraints. Constraints can
have a specified cause and effect, for example:
y = if v > limit then limit else v;
Although labeled as an acausal model, there is a causality where a value of v gives a value of y.
The following model is of a bouncing ball:

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 21 (63)

der(height) = velocity;
der(velocity) =-g;
when height <= radius then
 reinit(velocity, -c*pre(velocity));
end when

The model is acausal in the sense that either of the variables height, velocity or g could be
used as input to the model. Another way of expressing this is that the number of equations vs the
number of unknowns have to be matched.

Acausal models are often associated with the Modelica language. Modelica combines acausal
modelling with object-oriented thinking. For interfaces between physical components, it is favorable
to use acausal modelling, together with power port connectors where effort and flow information is
interchanged. This way, physical components can be connected to each other, similar to how they
are connected physically. Another advantage of using this realization level is that equations can be
simplified and even solved analytically.

Two new tools were released this year: Simscape 3.0 from the MathWorks, and MapleSim from
Maplesoft. Both these tools are similar to Modelica: combining equation based effort/flow
modelling, which enables physical modelling. Also SystemC-AMS and VHDL-AMS uses acausal
models, but limited to electric systems.

3.1.2.3.2 Continuous causal models

Continuous causal models are typically used by control engineers, to describe a system and its
controller. This abstraction level is also how continuous models are modeled using
MATLAB/Simulink block diagrams. There is no one-to-one mapping of an equation to a continuous
causal representation, the mapping depends on which variables that are used as input and output,
but also if integral or differential causality is chosen. Another continuous causal representation is
bond-graphs, which can be transformed into block diagrams [Karnopp2000].

3.1.2.3.3 Discretized models with solver

Discretized models typically have update and output functions, as a function of a time step. The
selection of solver is crucial to get a valid simulation result, including consideration of stiff systems,
selection of time-step etc. If hybrid models are simulated, the solver also needs to take into
account zero-crossing effects. This level of abstraction can be described by the same means as a
computer program, e.g. UML activity diagrams, state machines, c-code.

3.1.2.3.4 Discretized models with solver and platform implementation

Especially for real-time Hardware-in-the-loop simulations, it is crucial that the simulation can be run
in real-time. The platform can have a limited numerical resolution, have memory constraints, etc. In
a real-time system, the calculation time needs to be taken into account, and possibly scheduled.

3.1.2.4 Current status of EAST-ADL2 continuous-time behaviour

It is possible to define continuous causal ADL_funtions, by setting the attribute is_Discrete to
false. A means to describe Acausal models is not available, and could be seen as a target for
ATESST2. Discretized models should be possible to describe using EAST-ADL2 behaviour
notation, this is however yet to be verified.

3.1.3 Safety modelling and analysis

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 22 (63)

The first part of this section contains a comparative, critical review of the SOTA in model-based
safety analysis, a relatively new field of research that has dynamic grown and yielded a plethora of
new results over that last fifteen years. The review discusses important results and identifies
techniques that could provide a basis for the definition of appropriate safety/error modelling &
analysis concepts in EAST-ADL2. The second part of this section focuses on ISO 26262, the
emerging automotive safety standard. The standard is likely to influence developments in the
sector and should, therefore, be also considered towards the definition of relevant concepts in
EAST-ADL.

3.1.3.1 Model-Based Safety Analysis

Model-based safety analysis is an increasingly important technique in the design of safety-critical
systems. This is particularly true of Real-Time Embedded Systems (RTES), which are growing
ever more complex and which are increasingly distributed across a networked architecture or
incorporated into cooperative systems. Often RTES are used in order to improve the safety of a
system; for example, Electronic Stability Control in vehicles have been shown to be effective in
maintaining control and saving lives by significantly reducing the number and severity of crashes
[14]. Because RTES are widely used in safety-critical industries such as the automotive and
aerospace industries, it is vital to be able to perform a thorough and accurate safety analysis of
those systems to ensure they meet their dependability requirements. By identifying areas in a
system where reliability or safety is deficient, actions can be taken to remedy the weaknesses and
thereby improve the design of the system.

Motivation for Model-Based Safety Analysis. Traditional safety analysis has typically operated
on an informal understanding of the system design. Such techniques include fault tree analysis
(FTA) [15][16], in which the combinations of possible causes are deduced from the system failure,
and Failure Modes & Effects Analysis (FMEA) [17], which analyses the possible effects each
failure can have on the system. Techniques such as these are often carried out manually, either by
a single person or a team of engineers, in order to produce comprehensive documents to fulfil
safety requirements and to devise strategies to mitigate the effects of failure [18]. Although a great
deal of valuable knowledge about the safety and reliability of the system is gained in the process,
this type of informal, ad-hoc approach has a number of drawbacks.

Firstly, because the analysis takes place using informal knowledge of the failure behaviour of the
system, the safety analysis is stored separately from the knowledge of the structure of the system,
which is typically modelled more formally, and this can result in discrepancies or inconsistencies.
Secondly, the primarily manual nature of the analysis process increases the risk of introducing
errors or producing an incomplete analysis, particularly as the systems in question grow more
intricate. Furthermore, a manual analysis is usually much more difficult and expensive, meaning
that it is rarely carried out more than once and often only at the end of the design process to
ensure that the design meets safety requirements, despite the potential benefits that multiple
safety analyses can yield when used as part of an iterative design process. Finally, the informal
nature of the results of such ad-hoc analysis makes it difficult to reuse that information, whether in
a future iteration of the same system or in the design of a new system, particularly because the
safety information is stored mainly within the results of separate analyses and is therefore
separated from the system design itself.

In model-based safety analysis (MBSA), by contrast, the safety analysts and the system designers
use the same model of the system, or at least models which are closely linked in some way, and
this has a number of important benefits. Firstly, the resulting model is often more formal than a
separate safety analysis and this can introduce the possibility of automating part of the process of
safety analysis, e.g. by automatically generating fault trees from the system model or by simulating
the failure behaviour of the system by injecting faults into the model. This not only simplifies the
process, it also saves time and more importantly enables the safety analysis to be used as part of
an iterative design process because new results can more easily be generated once the model has
been changed. The more structured nature of the modelling also reduces the probability of

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 23 (63)

introducing errors or of omitting important detail since the safety information is linked to the
structural/nominal model of the system. Finally, a model-based safety analysis is often much more
suitable for reusing in other projects, because the safety information is packaged with the system
model, usually at a component-level, making it possible to reuse parts of the system without
necessarily needing to perform another separate safety analysis.

A considerable number of different MBSA approaches have been developed, and some of the
more prominent examples will be discussed below. Model-based safety analysis and verification
has also been investigated in a number of other recent projects, including ISSAC and its
predecessor ESACS in the aerospace industries (where the goal was to develop a formal
methodology and tools for the safety analysis of complex aeronautical systems), the ASSERT
project with similar goals but more focused on software intensive systems specified in AADL, the
SETTA project (focusing on the use of time-triggered architectures in automotive systems), and the
SAFEDOR project (which aimed to develop new practices for the safety assessment of maritime
systems).

Modelling in MBSA. As previously mentioned, one way of simplifying the process and of enabling
useful iterations of safety assessment is to automate (or partly automate) the analysis process. In
industry, there are established software tools that automate calculations on manually constructed
fault trees or assist clerical tasks in essentially manual FMEA processes (e.g. Isograph's
FaultTree+ tool). However, the synthesis of predictive system failure models such as fault trees
and FMEAs remains manual. Over the last 15 years, research has focused on further simplifying
safety assessment by automating the synthesis process. This work has followed two different
paradigms, each defining a distinct way of synthesising system failure models from other system
information. The first paradigm can be called compositional failure analysis while the second
behavioural fault simulation [19][20]. Compositional techniques are usually deductive in nature, i.e.
safety analysis proceeds from system failures to determine the causes of such failures), while
behavioural simulation techniques are typically inductive in nature, i.e. the analysis moves
forwards from known causes to determine the effect of such causes in the system). There is also a
separate paradigm for the diagnosis of faults in active systems based on models of those systems
(rather than synthesis of failure analyses from system design models) known as model-based
diagnostics. A more thorough comparison of the various techniques can be found in "Towards a
practicable process for automated safety analysis" [21].

Compositional Safety Analysis approaches

In compositional failure analysis, system failure models are constructed from component failure
models using a process of composition. System failure models are, or can be automatically
translated to, well known dependability evaluation models including fault trees, stochastic Petri-
nets and Markov chains. Techniques that follow the compositional approach include: Failure
Propagation and Transformation Notation (FPTN) [22], Hierarchically Performed Hazard Origin and
Propagation Studies (HiP-HOPS) [23], Component Fault Trees (CFT) [24], State-Event Fault Trees
(SEFT) [25] and Failure Propagation and Transformation Calculus (FPTC) [26]. The Error Model
Annex of the AADL also falls into this category as components are hierarchically annotated with
state-based failure information, which can then be subsequently analysed by tools [27].

It is important to note that in these approaches, the system failure model is not always merged with
the nominal model of the system. In AADL, for example, the failure (or error model) model extends
the nominal model of the system and has references to the hierarchy and components in that
model; similarly, in HiP-HOPS, the failure model and nominal model are closely connected, as
failure data is embedded in annotations to the system components and can make semantic
references to system properties. In other techniques such as FPTN, CFT, SEFT and EAST-ADL2,
the error model and the nominal model are separate models which are more loosely connected.

Behavioural Fault Simulation approaches

In behavioural fault simulation, system failure models equivalent to an FMEA are produced by
injecting faults into executable formal or semi-formal specifications of a system, thereby
establishing the system-level effects of faults. A modelling tool is typically expected to do the

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 24 (63)

analysis automatically. The modelling tool can be a simulator containing libraries of components
and their faults, in which case it is typically useful in a particular domain (e.g. simulation of
electrical diagrams, piping and instrumentation diagrams etc). However, the modelling tool can
also be more generic, e.g. enabling representation and formal analysis of systems represented as
state-automata. In this case, the tool can be applied in many domains. Techniques that follow this
later approach include safety analysis using formal techniques such as Altarica [28], FSAP-NuSMV
[29], Software Deviation Analysis [30], DCCA [31], as well as fault simulators such as AutoSteve
[UOH_01] and AutoFMEA by Ricardo [UOH 02].

Model-based Diagnostics

Fault diagnosis is the process of inferring the causes of system failure from their observable
symptoms. In model-based diagnosis this is partly achieved by reasoning on an executable model
of the system [44]. Typically, in a real-time diagnosis scenario, the state predicted by the
executable model is compared to observations of state variables of the system that can be
monitored using sensors. Any discrepancy between the actual and predicted system state
indicates a symptom of failure which is further investigated to identify the causes of that failure.
The process involves identifying and progressively eliminating sets of candidate causes by
performing more comparisons between predicted and actual states. Fault diagnosis is a process
that can be carried out either in real-time or off-line following an indication that a failure is present.
Running an executable model and performing the required inferences is often infeasible in real
time, so simpler diagnostic models are often used including fault trees or decision trees. In several
approaches, such diagnostic trees are automatically or semi-automatically constructed from design
models of a system [43][35].

There are a number of model-based diagnostics tools that have been developed in recent years,
such as RAZ'R [32], MDS [33], and RODON [34]. Although many such tools employ existing
programming or modelling languages to represent a predictive model of behaviour or a simplified
logical model of fault propagation, others use custom-designed languages such as Rodelica [35]
which is a declarative equation-based language derived from Modelica.

Modelling Primitives for Error Modelling. Although the model-based safety analysis and
diagnostic techniques mentioned above share common goals, they do not necessarily share a
common approach. One of the primary distinctions between these techniques is in the way they
choose to model failures. These broadly fall into one of three categories: fault propagation-based,
state-based, and equation-based.

Fault Propagation based approaches

In these approaches, the failure behaviour of the system is modelled as a propagation of failure
from one component to the next until it becomes a system-level failure. The propagation typically
follows lines of communication or other connections between components, e.g. dataflow, fluidic,
energy connections etc. Failures can also propagate by other means, e.g. by the physical proximity
of components. The failure propagation itself is typically described using some form of logic, e.g. in
the case of FPTN, FPTC, CFT and HiP-HOPS, this is done with Boolean logic, relating output
failures to a combination of input and internal failures. More complex forms of propagation can be
described with more complex logic, e.g. a propagation of failure that is dependent on the sequence
of failure can be described in HiP-HOPS using Pandora [36], a form of temporal logic.

State-based approaches

Another way of describing the failure behaviour of a system is to use states. In these approaches,
the occurrence of a failure is modelled as the transition of the system from a nominal state into a
failed state. This is the approach employed by AADL and Altarica, for example. In AADL, the error
model is implemented as a form of stochastic automaton; error and repair events are defined,
along with possible error states and input / output events (to support propagation to and from other
components), and then transitions are defined to show how events can cause the system or
component to transit from one state to another. Properties can also be defined for error states and
this mechanism allows the addition of quantitative failure data such as failure and repair rates.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 25 (63)

Equation-based approaches

A third possibility is to represent the occurrence of failures using equations. This is the approach
used in Rodelica, the model-based diagnostics language based on Modelica (also equation-
based). Rodelica provides semantics for failure modes and intervals, allowing for the specification
of component-level failure data. Other equation-based languages include gProms [37], VHDL-AMS
[38], and Ascend [39].

Critique of MBSA approaches. The number of different types of approaches (e.g. compositional
vs behavioural, state-based vs propagation-based) is due in large part to the different goals of
these approaches. Some techniques are geared towards off-line safety analysis and diagnosis, like
Rodelica and the other model-based diagnostics approaches; others, like AADL's error model
annex and HiP-HOPS, are intended primarily as design aids to help achieve safety requirements
or, like Altarica, DCCA, and FSAP/NuSMV, as formal methods for verification of system safety
using model checking. Some techniques also offer additional capabilities, e.g. HiP-HOPS provides
capabilities for multi-objective design optimisation enabling evaluation of candidate designs which
are automatically generated by genetic algorithms [40]. Therefore, any commentary on these
techniques has to take into account the goal the technique was designed to achieve.

Different approaches also offer different levels of automation. Although most techniques offer
some form of automated safety analysis, the scope and performance of this automation varies
considerably. For example, behavioural fault simulation approaches like Altarica, DCCA, and
FSAP-NuSMV in theory offer more complete automation than compositional safety analysis
techniques because they base the simulation on a full behavioural model of the system; because a
simulator of model-checker is expected to perform most of the assessment, they require less
additional modelling by the designer to handle errors. They also tend to require a simpler form of
component failure modelling (typically only internal failure modes are considered). However, the
effort required for behavioural system modelling – especially formal modelling – should not be
underestimated.

This higher degree of automation does come with a price, however: a higher computational cost
than compositional safety analysis techniques, which typically employ algorithms of lower
complexity. Most behavioural simulation techniques are also inductive, i.e. the assessment
proceeds from known causes to unknown effects, and in this type of analysis, the effective
assessment of combinations of causes is at best very difficult and at worst impossible to achieve
due to combinatorial explosion. Assuming that there are n possible component failures in a
system, assessment of combinations of m of those failures requires that the analysis is repeated
n!/((n-m)!*m!) times. For a system that has 1000 failure modes, assessment of the effects of
combinations of 2 failure modes requires that the analysis is repeated approximately half a million
times. Although this number can be reduced by carefully exploiting assumptions of independence
and by taking advantage of the monotonic properties of failure in coherent failure scenarios, the
problem of combinatorial explosion still persists. In deductive approaches, e.g. fault tree
approaches like Component Fault Trees and HiP-HOPS, the analysis of propagation of failures is
deductive (from effects to causes) and therefore not as prone to combinatorial explosion. Fault
trees are synthesised in linear time and this time is not determined by the highest order cutset (i.e.
the maximum number of failure modes considered in combination, which is defined only by the
positioning and nesting of AND gates in the error propagation model). In the case of HiP-HOPS,
this has enabled not only application of the technique to large systems but also its combination
with computationally greedy heuristics such as genetic algorithms for the purpose of architectural
optimisation with respect to dependability and cost [40].

Another problem with formal techniques is that they typically define their own language for nominal
and failure modelling, meaning it is not always fully compatible with other widely used design
languages and tools. On the other hand, some approaches, e.g. HiP-HOPS, focus only on failure
modelling and can easily complement design languages that focus on descriptions of nominal
behaviour. As a result, HiP-HOPS has been used with a number of different tools and modelling
languages in the past, including EAST-ADL, Matlab Simulink, and SimulationX (which is based on
Modelica).

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 26 (63)

Many formal techniques also tend to focus on functional safety analysis only, whereas other
approaches such as HiP-HOPS and AADL offer capabilities for probabilistic analysis (e.g. Poisson,
Binomial and Weibull calculation models) and in the case of HiP-HOPS, capabilities for common
cause and zonal analyses as well. Probabilistic analysis not only enables long term system
reliability and availability prediction, it is also important for software safety. Clearly, there is often a
need in software design to consider the probability of failure of components, otherwise it is
practically impossible to decide on appropriate techniques to ensure data integrity, fault detection
and fault tolerance. If controls rely on certain inputs, for example, we need to know the level of
integrity with which these inputs are provided by sensors and therefore the failure modes of those
sensors and their probability of occurrence.

Finally, some techniques are more supportive of reuse than others. Although most allow reuse in
some form, some techniques provide dedicated support for reuse of failure data, e.g. the
introduction of inheritable composable specifications of failure patterns in HiP-HOPS [41] or the
AADL's support for the storage and reuse of error information in a library (including capabilities for
adapting and overwriting information in specific situations) [42].

In summary, the various model-based analysis approaches discussed above have different
strengths and benefits, e.g. the high degree of automation possible with formal behavioural
simulation techniques versus the higher performance, more scalable algorithms available with
deductive compositional techniques. These two paradigms must therefore be both supported by
EAST-ADL2. HiP-HOPS provides a good example of a compositional technique and offers good
capabilities for safety analysis, however it lacks capabilities for formal verification. For this reason,
the state-based error model annex of AADL could also prove useful as an input to the definition of
the error model of EAST-ADL2. Finally, the capabilities of Rodelica as a means of facilitating
modelling for fault diagnosis in EAST-ADL2 will also need to be further explored.

3.1.3.2 ISO°26262 adoption

The introduction of new functionalities, with an impact on the vehicle stability or handling, could
cause a higher hazard level in case of malfunction or failure.

The new functionalities have to be considered “safety relevant” and potentially “safety critical”; it
means that, in case of faults, these functionalities could have a significant impact on the system
behaviour.

As a consequence, new functionality in the area of driver assistance, vehicle dynamics control,
active and passive safety systems, increasingly touches the domain of safety engineering. Future
development and integration of these functionalities will further increase the need of:

- New technologies to enable such systems to function more effectively with increased
design complexity and managing the safety;

- Safe system development processes within the possibility to show evidence that all
reasonable safety objectives are met (acceptable risk reached). This highlights the role of staff
engaged in the design, development and maintenance of these safety-related systems. The
achievement of sufficiently low levels of risk is critically dependent on individual and team
competence

With the trend of increasing complexity, software content and mechatronic implementation, there
are increasing risks from systematic failures and E/E random hardware failures, often rooted in
management and engineering processes.

The new International Standard ISO°26262 includes guidance to avoid these risks by providing
appropriate requirements and processes.

This International Standard is the adaptation of IEC°61508 to comply with needs specific to the
application sector of E/E systems within road vehicles. This adaptation applies to all activities

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 27 (63)

during the safety lifecycle of safety-related systems comprised of electrical, electronic, and
software elements that provide safety-related functions.

System safety is achieved through a number of safety measures, which are implemented in a
variety of technologies (for example: mechanical, hydraulic, pneumatic, electrical, electronic,
programmable electronic etc). While this International Standard is concerned with E/E systems, it
may also provide a framework within which safety-related systems based on other technologies
may be considered.

The ISO°26262:

- Provides an automotive safety lifecycle (management, development, production, operation,
service, decommissioning) and supports tailoring the necessary activities during these lifecycle
phases;

- Provides an automotive specific risk-based approach for determining risk classes
(Automotive Safety Integrity Levels, ASILs);

- Uses ASILs for specifying the item's necessary safety requirements for achieving an
acceptable residual risk; and

- Provides requirements for validation and confirmation measures to ensure a sufficient and
acceptable level of safety being achieved.

Functional safety is influenced by the development process (including such activities as
requirements specification, design, implementation, integration, verification, validation and
configuration), the production and service processes and by the management processes.

Safety issues are intertwined with common function-oriented and quality-oriented development
activities and work products. The ISO°26262 addresses the safety-related aspects of the
development activities and work products and it’s applicable to:

- E/E systems installed in road vehicles

- Interaction among these systems and vehicle systems

- Malfunction related to safety critical systems

- Foreseeable operational errors

- Foreseeable misuse

- Foreseeable maintenance malfunctions

- All lifecycle

- New systems only: on the market after the publication of the International Standard

- Series production road vehicles

This International Standard is based upon a V-Model as a reference process model for the
different phases of product development; It consists of the following parts, under the general title
Road vehicles — Functional safety:

Part 1: Glossary

Part 2: Management of functional safety

Part 3: Concept phase

Part 4: Product development: system level

Part 5: Product development: hardware level

Part 6: Product development: software level

Part 7: Production and operation

Part 8: Supporting processes

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 28 (63)

Part 9: ASIL-oriented and safety-oriented analyses

The shaded "V"s represent the relations between Parts 3, 4, 5, 6 and 7 of this International
Standard.

Figure 2 ISO26262 standard structure.
Part 3 of the International Standard specifies the requirements on the concept phase for
automotive application. This phase, under road vehicles manufacturers’ responsibilities, includes
the item definition, the initiation of safety life cycle, the hazard analysis and risk assessment (ASIL
determination, Safety goals and Safe states definition) and safety requirements definition.

Part 4 specifies the requirements on product development at the system level. This phase, under
road vehicle manufacturers’ responsibilities, includes the safety technical specification, the system
design integration and testing, the safety validation and assessment, the product release.

Part 5 specifies the requirements on product development at the hardware level (safety technical
design). This phase is primarily the responsibility of component suppliers. Because the
manufacturer has the overall responsibility for meeting safety requirements, the evidence for safety
has to be provided to the vehicle manufacturer with an appropriate level of detail.

Part 6 specifies the requirements on product development at the software level for automotive
applications (safety technical design). As with part 5, this phase is primarily the responsibility of
component suppliers. Because the manufacturer has the overall responsibility for meeting safety
requirements, the evidence for safety has to be provided to the vehicle manufacturer with an
appropriate level of detail.

Part 7 specifies the requirements on production as well as operation, service and
decommissioning. This phase is under the responsibility of the vehicle manufacturer.

3.1.4 Product family and variability modelling

Over the past 10 to 15 years, software product families or software product lines have drawn
increasing attention from software science and practice. The fundamental principle of product line

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 29 (63)

oriented development is to no longer develop the individual products of a software manufacturer
independently from one another and in parallel, but as instances of an embracing product line
infrastructure, which are then derived from this infrastructure by way of configuration and, if
required, manual adaptation. Thereby, the focus of development shifts from the individual products
to the set of products the manufacturer has on offer, i.e. his product line, thus turning this product
line into a tangible entity of development.

In addition to the state-of-the-art investigated during ATESST1 and documented in the related
ATESST1 deliverables, an important new related research activity came up recently: the addition
of variability concepts to AUTOSAR was considered by the AUTOSAR consortium. At the time of
writing, however, no details on these efforts are published yet and they can therefore not be
documented in detail here.

Furthermore, many other contributions were published by the research community, esp. in the form
of conference or journal papers, which may be of interest to ATESST2. A detailed account of these
smaller publications is beyond the scope of this overview deliverable; also it is not possible to
evaluate their relevance for EAST-ADL2 without a concrete research question in mind. Therefore,
they will be investigated in more detail within WT3.3 in relation to individual EAST-ADL2
extensions developed there.

3.1.5 Analysis-Driven Architecture Evaluation and Optimization

This section is divided into two parts, the first part discusses modelling requirements to support
analysis and the second focusing more on modelling support required to perform optimization on
the described architecture.

3.1.5.1 Architecture Design and Analysis Integration

While the maturity of analysis techniques1 has led to a set of well established mathematical
formalisms in software engineering, such as for example Fault Tree Analysis (FTA), Rate
Monotonic Analysis (RMA) and further extensions, Petri nets, queuing theory, and timed automata,
their widespread use with complex industrial systems and into integrated tool environments still
remains largely open. Analysis is a difficult and time-consuming task, and to save time, many
industries either forgo it until absolutely necessary or train their designers to perform preliminary
analysis. However, most designers are under-trained in analysis and too busy to perform useful
analysis.

In order to perform these analyses, the design representation must be first transformed into a
formalism that admits a form of mathematical evaluation. This formalism is referred here as
“analysis model”. Analysis tools accept as inputs these analysis models and evaluate them
mathematically to produce results which are then used to successively refine the design models.
Although both the design and the analysis models are views of the same system, they describe it
at different levels of semantic abstraction. Obtaining the latter from the first is generally a difficult
task. Hence, design-analysis integration often turns out to be a difficult proposition. For instance,
current industrial tools for timing analysis, such as for example SymTA/S from Symtavision,
TriPacific’s RapidRMA, Livedevices’ Real-Time Architect, CoMET from VaST and Vector’s
CANAlyzer, and academic ones such as MAST and TIMES, provide very strong solutions for
analyzing real-time properties, but each does so with different system representation formalisms.

1 In this document, analysis refers to some kind of engineering/quantitative analysis that uses mathematical techniques to study certain
quality attributes of the system. They include stress, thermal or fluid analysis in mechanical engineering, and performance, safety or
reliability analysis in software engineering.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 30 (63)

In addition, due to the large syntactic and semantic gap between design and analysis
representations, some design information must undergo significant simplification (e.g., behaviour
model transformation) or refinement (e.g., addition of the underlying OS services model of a
system) before being fed into the analysis models understood by analysis applications. This is
usually a tedious, slow, and error-prone process that characterizes the infamous “islands of
automation”.

The software engineering community has invested special efforts in incorporating the abilities to
specify analytical constructs and quality properties with enough expressive power, while still
preserving the modelling abstraction level used by system architects. Important research work has
been carried out in order to provide modelling languages (e.g., UML, SDL, AADL) with clear and
well-formed semantic to support analysis (a summary is proposed in [54]). The ultimate goal is to
enable designers to perform analysis directly from their architecture design tools (by calling
analysis tools via specific user interfaces) thus reducing the time required to prepare a model for
analysis.

However, most of the current work is characterized by providing monolithic and particular solutions
for specific analysis techniques, limiting the capacity of reuse, composition, and interoperability
between heterogeneous approaches. These aspects reduce enormously their use in real complex
embedded systems, which are intrinsically heterogeneous. In most of cases, no single methods
can support the analysis of entire systems. In addition, current trends in the model-based
engineering community focus more on how to represent analyzable systems, than on how to build
these representations in a global design flow, and to merge analysis results in the global system
solution. A fundamental shortcoming in current model-based analysis research is the inability to
capture decision-related knowledge and the context in which the analysis results are applied [50].

This raises the need of more powerful model-based analysis support and flexible modelling
mechanisms to drive design from techniques such as design space exploration and sensitivity
analysis.

Design Space Exploration. In order to be able to make right system platform selections, the
feasibility of candidate application-platform bindings need to be predicted w.r.t. different non-
functional requirements and constraints. Design space exploration assists designers to efficiently
decide among candidate implementation alternatives especially when the space of possible
solutions is large. The decisions are usually located according to several design goals, and the
alternatives therefore represent a multi-criteria decision problem [51]. In an integrated model-
based process of real-time systems, these criteria should be typically distributed in different model
views which provide specific quality constraints and predictions –typically, deadlines and resource
capacity vs. response times and slacks- obtained from various information sources, such as safety
analysis, performance simulation, or scheduling analysis.

Furthermore, in a scenario for efficiently analyzing systems, there is the variety of aspects that
need to be analyzed and also the number of solution methods that can be performed (and their
information requirements). Regarding the problem of dependability versus cost optimization,
Papadopoulos and Grante [62] propose a multi-objective optimization approach that uses Pareto
frontiers and genetic algorithms to explore optimal tradeoffs between dependability attributes and
cost [55] (see also section 3.1.6.2). In the timing analysis field, Racu et al [CEA 9] proposed an
approach based on genetic algorithms to optimize power consumption parameters while meeting
timing requirements. This is implemented in the SymTA/S tool.

Sensitivity Analysis. It cannot be expected that all non-functional information required for
analysis is fully available up front. Instead, designers must work with incomplete specifications,
early property estimates, or even flexible constraints that must be balanced with other parameters.
Sensitivity analysis is an approach to deal with those design uncertainties, i.e., how far a particular
parameter can be changed without affecting the feasibility of the system. In general, sensitivity
analysis shows how “sensitive” are the overall results to a given parameter. It allows the system
designer to assess the system-level impact of changes in quality properties of individual hardware
and software components. For example, variations in the implementation of different application

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 31 (63)

parts, functional extensions, or changes of timing at subsystem or system interfaces are issues
that can turn a previously conforming system into one that violates non-functional constraints.

Particularly for scheduling-aware analysis techniques, there is a number of works providing search
algorithms to one-dimensional and multidimensional (simultaneous variations of a set of
parameters) sensitivity analysis [53]. Although the sensitivity analysis process may be fully
delegated to analysis tools, there is an important gap in modelling languages for addressing the
correct parameterization (e.g., determination of dependent, independent, and critical parameters)
and solution selection from a modelling viewpoint.

Preliminary Conclusions, Open Issues & Way Forward Towards Analysis Integration in
EAST-ADL2. From a modelling language viewpoint, some aspects need more investigation. For
instance, current modelling solutions for describing single-point “allocations” as proposed by
SysML or MARTE lack important features required for analysis. Suppose that we link an
application model with a platform model (application-platform allocation) in the context of a given
analysis scenario. The non-functional annotations involved in the application model (e.g.,
execution times, memory usage) and the platform model (e.g., resource utilization) will get a
specific set of values. The SysML and MARTE allocations are specified by a unique relationship
between the source and the target models. The first question that arises is, “what happens if we
specify multiple allocation cases?”, for example, in order to allocate the same application in
different available platforms. We actually do not have means to declare multiple versions of non-
functional values on the same models. We can formalize this limitation as follows:

“Given various allocation alternatives of application/platform models, how to specify the
different property value versions (resulting from the allocation) annotated in the internal
modelling parts of the allocated application/platform models?”

Furthermore, different model analysis methods focus on different aspects of the model. Building
heterogeneous models of analysis contexts therefore implies to integrate analysis results from
different views and/or subsystems and to calculate global predictions.

“How can we express the relationships between different analysis methods to calculate
global quality parameters (derived predictions, optimization objective functions, measures
of effectiveness)?”

On the other hand, although the sensitivity analysis process may be fully delegated to analysis
tools, there is an important gap in modelling languages for addressing the correct parameterization
(e.g., determination of dependent, independent, and critical parameters) and solution selection
from a modelling viewpoint:

“How can we drive sensitivity analysis tools by properly qualifying parameters in design
models?”

In [50], the authors have used the basic MARTE mechanisms to specify non-functional variables to
compose multiple quantitative scenarios that are further evaluated to make efficient design
decisions. An extension of this approach in ATESST-2 could provide a basis for analysis
integration in the context of the various analyses that are possible using the framework of EAST-
ADL2 models.

3.1.5.2 Optimisation

Motivation for Optimisation. A particularly challenging aspect of a multi-objective analysis of a
complex system under design that was briefly mentioned in the preceding section is that of design
exploration. Embedded systems are characterised by sharing of information and hardware
resources which means that large numbers of configuration and reconfiguration options are
available not only at design time but also at run time, due to the use of shared processors and
communication channels. When the functions of a system can be delivered by multiple different
configurations, designers are faced with hard optimisation problems, especially when the design
space is very large (as is typical for complex systems).

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 32 (63)

The dependability of individual configurations can of course be determined using safety analysis
and verification techniques such as fault tree analysis and model checking. However, satisfying
dependability requirements with optimal use of resources and minimal costs requires additional
technological support in the form of a global optimisation process. Where it is possible to fulfil all
dependability requirements within economical and technical bounds, the architecture that has
minimal costs is the optimisation goal. If all dependability requirements cannot be met with
acceptable costs, then the problem becomes one of finding architectures that achieve optimal
trade-offs between dependability and cost.

It is widely accepted that the various formulations of the above represent hard, combinatorial multi-
objective optimisation problems that can only be approached systematically with the aid of
optimisation techniques and computerised algorithms that can effectively search for optimal
solutions in large potential design spaces.

As an example problem, one mechanism that designers have for altering the safety and reliability
characteristics of systems is the substitution of single components with fault tolerant schemes that
incorporate redundant components and subsystems. The technique has been shown to work well
in combination with measures that ensure the diversity of replicated (hardware or software)
components and minimise the possibility of common cause failure. However, the decision on the
optimal location and level of replication of components is a non-trivial task and this is especially
true as systems increase in size and complexity. This problem of maximising reliability via such
replication within given cost and other (e.g. weight) constraints has come to be known as the
Redundancy Allocation Problem (RAP).

One of the objectives of the ATESST2 project is therefore to develop a novel approach to multi-
objective evaluation and optimisation of systems, particularly with regard to safety and reliability.
Such an approach would be generic and could include cost and any quality attribute (such as
safety, reliability, availability, performance etc), albeit with two constraints: firstly, there has to be a
technique capable of assessing the quality of the model in terms of the chosen attribute (e.g. in the
case of safety, it must be possible to evaluate the safety of the system); secondly, there must be
automatic transformations that can be applied to the model to alter the chosen attribute (e.g. in the
case of reliability, one option would be the possibility of replicating a component). The goal of the
approach would be to find designs that represent optimal or near-optimal tradeoffs amongst the
chosen attributes and cost for a complex system. The potential benefits from such an optimisation
technique are substantial and include the automation of complex evaluations and the
establishment of a transparent, mathematical basis for achieving successful tradeoffs among
quality and cost in the design of complex systems.

Approaches to Optimisation. Optimisation problems like the RAP have been addressed by
numerous researchers. A review of early work on the RAP can be found in Frank et al (1977) [56]
and Chen (1992) [57] has shown that the problem is NP-hard. Fyffe et al (1968) [58] used a
dynamic programming algorithm to solve RAP in a series of 14 k-out-of-n subsystems and it was
also solved using integer programming by Ghare and Taylor (1969) [59]. Nakagawa and Miyazaki
(1981) [60] used a surrogate constraints approach to solve 33 variations of Fyffe's problem which
have since become a benchmark for optimisation methods seeking to solve the RAP.

There are a number of heuristics that can be employed to perform this sort of optimisation,
including simulated annealing, Tabu search, genetic and ant system algorithms; all of these have,
for example, been applied to the RAP. Coit and Smith (1996) [61] have used a genetic algorithm
(GA) to solve the 33 variations of RAP and have demonstrated results that improve those reported
by application of exact mathematical methods. Kulturel-Konak et al (2003) [62] have used Tabu
search which performs a guided neighbourhood search and is individual based rather than
population based as with a GA. A limitation of all of these methods is the use of constraints in
place of true multi-objective search. A single optimal solution is typically sought which maximises
reliability within certain cost and weight constraints. However, in practice, designers are often
interested in examining several optimal or near-optimal solutions that provide different tradeoffs
among the parameters of the optimisation. To enable this type of optimisation, Kulturel-Konak et al
(2005) [63], Papadopoulos and Grante (2005) [64], and Grunske (2006) [65] have all proposed

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 33 (63)

multi-objective heuristic approaches that generate Pareto frontiers of non-dominated solutions
providing such tradeoffs.

Though there have been advances in solving RAP, one important limitation and a constant feature
of all earlier approaches is the use of reliability block diagrams (RBDs) for reliability evaluation.
RBDs have been extensively used because they fit the simplified modelling assumptions of series-
parallel systems that have dominated RAP literature. Indeed, representation of failure behaviour in
RBDs assumes that the system is formed in a series-parallel configuration of components, and
either works or fails in a single failure mode which typically suggests complete loss of system
function. A parallel configuration typically fails if all (or the majority of) constituent components fail
and a series configuration fails if any of the subsystems in the series fails. These assumptions are
hardly ever met in the design of complex systems and networks.

Another issue that has not been addressed in earlier work is limitations in the performance of
optimisation algorithms. Most realistic systems by far exceed the computational requirements of
the benchmark problems discussed in the literature. In the past, this has confined application of
techniques to small examples. However, recent advances in parallel algorithms and progress in
GRID computing create possibilities for major advances in the optimisation of dependable systems
in the near future.

HiP-HOPS is a recent model-based analysis technique that offers a departure from RBDs [66].
HiP-HOPS overcomes the limitations of RBDs by providing automatic analysis of complex systems
(i.e. not necessary series-parallel as in the RAP) that exhibit multiple failure modes. HiP-HOPS
makes use of genetic algorithms to determine the optimal allocation of redundant components and
has been demonstrated on the RAP, where it produces optimal or near-optimal solutions along the
Pareto frontier. The safety analysis capabilities of HiP-HOPS are used as the evaluation function to
determine the quality of the system variation being considered at each stage of the optimisation.
This offers a significant performance advantage – because HiP-HOPS analyses usually take only a
few seconds to complete, evolution over hundreds or thousands of generations of possible designs
is relatively quick. Another advantage is the flexibility of HiP-HOPS, which also allows for other
objectives to be considered in optimisation. Additionally, HiP-HOPS does not rely on fixed
redundancy allocation schemes and so it is possible to experiment with other methods of
improving safety, e.g. active and passive standby redundancies, recovery blocks, execution
platform reassignment, safety monitors, and in the general case substitution of any hardware of
software sub-architecture with user specified alternatives.

In summary, enabling model-based system optimisation could assist the systematic exploration of
large and complex design spaces. However, there has been little practical progress in the field. To
our knowledge there has been no work focused on dependability versus cost optimisation in the
context of emerging and ADLs, and there is, therefore, a clear opportunity for a contribution to the
SOTA in this area, e.g. by exploring how EAST-ADL2 can deliver such optimisation in conjunction
with tools such as HiP-HOPS.

3.2 Meta-modelling languages

Two relationships form the core of models used in computer systems2. The first relationship, called
“represented by”, identifies a representation role of a given modeled object over a model. The
second relationship, called “conforms to”, identifies a dependency of a given model on a modelling
language. In model-driven engineering (MDE), the latter relationship receives special attention
since domain modelling languages are described and prescribed by models. These models are

2 This section is adapted from H. Espinoza’s PhD thesis An Integrated Model-Driven Framework for Specifying and Analyzing
Non-Functional Properties of Real-Time Systems, CEA LIST, september 2007.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 34 (63)

called metamodels. A metamodel is yet another abstraction highlighting properties of the model
itself. This model is said to conform to its metamodel like a program conforms to the grammar of
the programming language in which it is written. This means that a metamodel describes the
various kinds of contained model elements and the way they are arranged, related and
constrained.

There are different taxonomies for defining the characteristics required to fully specify a domain-
specific language (see for example [67], [68]). In all these classifications, we have identified three
important specification criteria:

1. Syntax. This includes a set of constructs that can be exchanged and specifies how they
can be linked together to form valid expressions in a language (syntactical rules). Abstract
syntax defines the rules for creation of well-formed sentences in a given language, whereas
concrete syntax provides a concrete representational system for expressing the elements
of a given language. In visual modelling languages, concrete syntax may be graphical,
textual, or mixed.

2. Semantics. To provide semantics for syntactical constructs, we need to describe their
meanings in terms of some well-known semantic domain. This implies describing
syntactical elements in terms of a formal, mathematical framework (denotational approach),
a set of logical rules (axiomatic approach), or a set of rules for execution on an abstract
machine (operational approach).

3. Pragmatics. For modelling languages in particular, the relationship between the syntactical
constructs and their understandability (to language users) is key to the effectiveness of
model interpretation. Pragmatics take into account the visual features of concrete
syntactical constructs (e.g. morphological, geometric, spatial and topological relationships)
used by visual modelling languages to represent real objects and relationships.

The predominance of metamodels in visual modelling languages specifications raises the issue of
their potential reuse. Indeed, the ability to reuse and/or specialize (parts of) existing metamodels is
crucial to avoiding development of new modelling languages from scratch. There are two major
ways to extend modelling languages [69]:

1. Heavyweight extension. This approach implies the inclusion and refinement of new
language constructs from an existing modelling language. It allows designers to extend,
refine and modify the source language as required to create a new modelling language.

2. Lightweight extension. This approach is restricted to the use and extension of an existing
modelling language metamodel without modifying the abstract syntax or semantics of the
source modelling language.

The choice of approach certainly depends on the particular language application and on what kind
of (and how many) design resources are available (tools, know-how, etc.). In a domain-specific
modelling language (DSML) that derives from a lightweight extension of a general-purpose
language, such as UML, we must make tradeoffs between a number of advantages and
disadvantages. This is the approach carried on with the EAST-ADL2 language implementation.

The main advantages of the lightweight extension mechanism are the low cost of support tools and
a more effective language learning curve for multiple and long-term projects. This approach does
not generally require very specialized training. Its disadvantages relate fundamentally to the base
language, which must cover a broad semantic domain to be reused by multiple DSMLs. In UML,
for instance, this implies specification of multiple semantic variation points that increases the
complexity of the DSML design.

Profiles [70] are the built-in lightweight mechanism that serves to extend MOF-based languages.
More specifically, profiles are used to customize UML for a specific domain or purpose via
extension mechanisms that enrich the semantics and syntax of the language. A stereotype is the

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 35 (63)

basic feature for UML extension. It can be viewed as the specialization of an existing UML
concept, which provides capability for modelling domain-specific concepts or patterns. Stereotypes
may have attributes (also called tags) and be associated with other stereotypes or existing UML
concepts. From a notational viewpoint, stereotypes can give a different graphical symbol for UML
model elements. For instance, a class stereotyped as «clock» might use a picture of a clock
symbol instead of the ordinary class symbol. Additionally, stereotypes can also be influenced by
restrictions expressed in constraints. The standard machine-readable textual language for defining
constraints in MOF-based languages is Object Constraint Language (OCL).

Since the recent UML2 versions, profiles have significantly enhanced both the syntax and the
semantics of the extension mechanisms:

• Profiles integrate a special graphical notation that facilitates understanding of the defined
extensions. Stereotypes are represented as classes linked to their base metaclasses by the
“extension” association. Constraints and stereotype attributes are then represented as part of
the stereotype definition.

• Profiles can use an excerpt of the whole UML metamodel. A typical profile that imports only a
subset of UML is SysML. This makes SysML a compact DSML in terms of the number of UML
concepts used.

• The stereotype definition concept is better positioned in the metamodelling pyramid promoted
by OMG. Unlike UML 1.x, stereotypes are now considered M2 constructs.

However, efforts made to improve the profile mechanism have contrasted with the lack of guidance
for its correct use. One common approach to designing UML profiles involves the so-called
conceptual domain models. The language specification is defined at a first stage by means of a
domain model (expressed in MOF or alternatively in UML itself), which abstracts away the UML
mapping issues. The main intent of conceptual domain models is to separate concerns and
enhance the appropriateness of the language construct with regard to the domain concepts. The
domain model, which is created with pure domain considerations, is then translated into the target
profile.

A recent paper [71] proposes a systematic methodology to design UML profiles by adopting a set
of minimum framing rules. Since these rules are defined on the basis of regularly occurring design
patterns, domain models can be subsequently checked for self-consistency and interactively
transformed into stereotypes, tags and constraints. Each decision of the designers is interactively
evaluated to alert them to potential UML language conflicts and propose more appropriate
mapping decisions. Designer choices are stored in a decision file that allows profile regeneration,
which is particularly useful when modifications are applied to the domain model.

Such a proposal is of particular importance in the work conducted in ATESST2, however some of
the suggested ideas need to be adapted to the fact that EAST-ADL2 is a language for which
implementations – in the form of profiles – already exist and have been continuously refined.
Another aspect is that the conceptual domain language is as important as its implementation as
profile and both need not be too divergent, which somewhat constrains the scope of design
patterns applicable to enhance the sole profile.

AUTOSAR Metamodelling
AUTOSAR defines templates that are the format for exchange of software information within the
automotive domain. Formally this is performed by the definition a metamodel that is transformed
into an XML Schema. The metamodel is defined in the UML tool Enterprise Architect and
AUTOSAR has defined rules for the design of this metamodel. Basically AUTOSAR uses a subset
of UML, with additional restrictions and a UML profile to tag information in the metamodel [72].
These rules do not only facilitate the generation of an XML Schema of a particular structure but
also the generation of editors directly from the AUTOSAR metamodel.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 36 (63)

EAST-ADL2 is related to AUTOSAR such that EAST-ADL2 refers to AUTOSAR, i.e. a lightweight
extension - even though AUTOSAR can also be seen as a subset of EAST-ADL2 where the
AUTOSAR System is in the ImplementationArchitecture abstraction level of EAST-ADL2.

EAST-ADL2 has defined the domain model in the same tool as AUTOSAR uses. By applying the
same rules as AUTOSAR poses on its metamodel some additional benefits can be reached:

1. The format of the domain model complies with the automotive domain de facto standard.

2. Distinction of different concepts and their relations as defined by AUTOSAR are formalized
in the domain model. E.g. types, prototypes, and references to occurrences (instanceRef)

3. The formalization of the domain model would also serve as additional design information
when the UML Profile and Tool platform is defined within the ATESST2 project.

4. The EAST-ADL2 domain model would be prepared to be used to define AUTOSAR
compliant exchange formats and editors.

5. The experiences in designing a UML Profile for EAST-ADL2 would give experiences on
how a profile for AUTOSAR should be designed.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 37 (63)

4 EAST-ADL2 in the context of various evaluations and classifications of ADL

4.1 Introduction

For a long time the term Architecture Description Language has not been clearly defined in the
research community. Instead frameworks for classification and comparison of languages have
been devised. The languages claiming to be ADLs span a wide range: from programming
languages to formal specification and simulation languages, that differ in the level of tool support,
the extent to which the syntax and semantics of the language is captured formally, the support for
model checkers, code generation and runtime support. We will evaluate the current status of
EAST-ADL according to a widely recognized classification framework.

The benefits of ADLs include a shift in focus to larger scale thinking about software, also called
"programming in the large", raising the importance of a higher level view of the software. Thus
allowing better planning, aid understanding, aid communication through simple and often graphical
syntax.

4.2 A Classification Framework for ADLs

A list of the minimum requirements for an ADL is provided by Medvidovic and Taylor [8]. An ADL
must explicitly model components, connectors, and their configurations; furthermore, to be truly
usable and useful, it must provide tool support for architecture-based development and evolution.
An ADL is thus a language that provides features for modelling a software system's conceptual
architecture, distinguished from the system's implementation. ADLs provide both a concrete syntax
and a conceptual framework for characterizing architectures.

The classification framework proposed Medvidovic and Taylor [8] consists of several criteria that
can be packaged into four groups: components, connectors, architectural configurations and tool
support. In the following we will look at the criteria for each of these groups separately.

4.2.1 Components
ADLs allow a component based description of the structure of the system, where the structure can
be described in terms of components and connectors. Components are units of computation or
data structures.

• Interface: An interface specifies the services offered by the component and thus specifies
the interaction points between components and the external world. An Interace also
specifies the computational commitments and constraints.

• Types: A type provides an abstraction that encapsulates functionality for reuse. It can be
instantiated multiple times and can even be parameterized.

• Semantics: The semantics provides a high level model of a components behavior.

• Constraints: A constraint specifies an assertion of the system.

• Evolution: Evolution support allows the modification of the properties of the component, in a
controlled manner, with techniques such as subtyping and refinement.

• Non-functional properties: All the properties that cannot be derived from behavior need to
be specified separately such as the properties needed for simulation, performance
analysis.

4.2.2 Connectors

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 38 (63)

Connectors model the interactions among components and specify additional rules. Just as the
components, the connectors are classified along the lines of interfaces, types, semantics,
constraints, evolution and non-functional properties.

• Interface: The interface of a connector enables the proper connectivity between
components by specifying the interaction between the connector and its attached
components or other attached connectors.

• Types: A connector type is an abstraction that encapsulates component communication,
coordination, and mediation decisions. This can be accomplished by an extensible type
system, or a built-in, enumerated type.

• Semantics: The semantics is a high-level model of the connector’s behavior. It entails the
specification of an interaction protocol.

• Constraints: A constraint ensures the connector's adherence to an interaction protocol, e.g.
by specifying multiplicity.

• Evolution: Evolution supports the modification of the connector's properties, e.g. by
incremental information filtering, subtyping or refinement.

• Non-functional properties: A Non-functional property states the requirements for correct
implementation and is used for e.g. simulation, performance analysis.

4.2.3 Configurations

While components and connectors specify the parts of an ADL model, the architectural
configuration describes criteria for the model as a whole. The configuration can be thought of as a
graph that describes the architectural structure.

• Understandability: The software architecture described by the ADL is an early
communication conduit for different stakeholders. Therefore the ADL should present
structural information with a simple and understandable syntax

• Compositionality: The software architecture is described at different levels of detail, and
provide the ability to abstract parts away.

• Refinement and traceability: The ADL can be used as a bridge between informal
specification and implementation. The description allows correct and consistent refinement
into executable code, including traceability of changes.

• Heterogeneity: The ADL allows integration of preexisting components, components of
different granularity, modelling language and implementation language. Thus an ADL
needs to be open and provide facilities for different types of components and connectors.

• Scalability: An ADL provides abstractions to cope with software complexity and size.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 39 (63)

• Evolvability: The ability for addition, removal, replacement, and reconnection in a
configuration.

• Dynamism: While evolution captures offline changes, dynamism deals with structural and
behavioral modifications during execution.

• Constraints: Global constraints that oft depend on constraints for components and
connectors.

• Non-functional properties: Non-functional properties on a global level.

4.2.4 Tool support

ADLs provide a formal description of the system, thus they can be manipulated and reasoned
about in an automated fashion by software tools. This tool support determines the usefulness of an
ADL to a large extent.

• Active Specification: An active specification reduces possible design options.

• Multiple Views: Multiple views of the same architecture are a way of reducing the perceived
complexity of the architecture. It is also useful to provide different views for different
stakeholders. At the same time one has to assure the consistency between the views.

• Analysis: Through analysis of the architecture errors can be detected early on, reducing
their impact and cost.

• Refinement: The correctness and consistency between architectures cannot always be
guaranteed, but through tool support confidence in the correctness and consistency can be
gained.

• Implementation Generation: The end goal of the development process is the executable
system and its implementation. Automated generation can ensure consistency and
traceability between architecture and implementation.

• Dynamism: When changes are made to the architecture they are evaluated to determine if
they are desirable and property-preserving.

4.3 Evaluation of EAST-ADL

We use the framework of Medvidovic and Taylor [8] introduced in the previous section to
evaluate the current status of EAST-ADL.

4.3.1 Components

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 40 (63)

• Interface: EAST-ADL uses ports for defining the interface of a component. A variety of
port constructs is available, such as the ADLFlowPort, ADLPortGroup and
ADLClientServerPort.

• Types: EAST-ADL uses a Type/Prototype concept, where types are defined and later
reused as prototypes. This concept is realized in the constructs ADLFunctionType and
ADLFunctionPrototype. It is possible to parameterize these constructs using variability
concepts.

• Semantics: The semantics of EAST-ADL is described textually in a language
specification document. However, EAST-ADL is not specified with formal semantics.

• Constraints: To put constraints on EAST-ADL components, the Object Constraint
Language (OCL) can be used. EAST-ADL also offers the construct DesignConstraint
used for feature modeling.

• Evolution: Extensive support for the evolution of requirements is available. The
evolution can be tracked explicitly by constructs such as ADLRefine, ADLSatisfy,
ADLVerify, ADLRealization.

• Non-functional properties: EAST-ADL offers constructs for safety analysis and timing
analysis. The construct TimingRestriction allows to give bounds on system timing
attributes, i.e. end-to-end delays, periods, etc. The SafetyRequirements construct allow
to augment components with information for safety analyses.

4.3.2 Connectors

• Interface: The interface of connectors is specified by its ports. EAST-ADL offers the same
constructs for connectors as for components, namely ADLFlowPort, ADLPortGroup and
ADLClientServerPort.

• Types: EAST-ADL uses a Type/Prototype concept.

• Semantics: The semantics of EAST-ADL is described textually in a language specification
document. However, EAST-ADL is not specified with formal semantics.

• Constraints: OCL can be used for defining constraints on connectors.

• Evolution: There are no concepts for the evolution of connectors.

4.3.3 Configurations

• Understandability: The EAST-ADL implementation as a UML profile offers a graphical
syntax, which improves understandability of complex configurations.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 41 (63)

• Compositionality: EAST-ADL provides five levels of abstraction: Vehicle Layer, Analysis
Level, Design Level, Implementation Level and Operational Level. These levels are
useful for composition, but also for refinement and traceability.

• Refinement and traceability: EAST-ADL provides five levels of abstraction: Vehicle
Layer, Analysis Level, Design Level, Implementation Level and Operational Level. The
elements of different layers can be linked through typed traceability links such as
ADLRefine, ADLSatisfy, ADLVerify and ADLRealization.

• Heterogeneity: EAST-ADL allows the integration of preexisting components at different
levels of abstraction. It even allows the integration of "external" definitions, mainly for
behavior modeling.

• Scalability: EAST-ADL has several approaches for dealing with complexity and size.
Feature modeling offers one such approach, but also the five predefined levels of
abstraction help to limit the perceived complexity.

• Evolvability: The EAST-ADL tools allow addition, removal, replacement and
reconnection.

• Dynamism: At the moment there is no explicit language support for structural and
behavioral modifications during execution.

• Constraints: Configurations and its components can be constrained using OCL.

• Non-functional properties: Just as with components, timing information and safety
information can also be included on a global level.

4.3.4 Tool support

• Active Specification: The EAST-ADL tooling actively supports the user during
specification, e.g. the tool prevents syntactically incorrect connections between
components.

• Multiple Views: EAST-ADL provides possibilities for multiple views on different levels of
abstraction. However, it is left up to the user to ensure the consistency between the
different views.

• Analysis: EAST-ADL supports validation techniques such as simulation, rapid control
prototyping (RCP) and hardware/software in the loop and safety analysis. Simulation
requires execution of the plant model and the system model, which are supported.

• Refinement: EAST-ADL provides five levels of abstraction: Vehicle Layer, Analysis
Level, Design Level, Implementation Level and Operational Level. The refinement
between the first three levels is explicitly supported by the current EAST-ADL tools.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 42 (63)

• Implementation Generation: Currently there is no automated transformation from EAST-
ADL to an implementation language such as AUTOSAR.

• Dynamism: At the moment there is no support for property-preserving refactorings of
models.

4.4 Conclusion

In this section we have introduced the framework of Medvidovic and Taylor for the classification
and comparison of ADLs. We then evaluated EAST-ADL according to this framework.
According to this framework, EAST-ADL fulfills all the criteria of an Architecture Description
Language. We found that according to this framework, EAST-ADL can be improved regarding
dynamism.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 43 (63)

5 Conclusions

As can be seen in this document it is hard to define what should be in a architecture description
language like EAST-ADL2. The project limits itself by setting a scope on language to provide a
‘layered approach’ to how electronic systems in vehicles can be defined. This is not enough as
there are many ways to do this.

Choosing the right ones in the multitude of possible abstraction layers and viewpoints needing
modelling support is one task. The important tasks in this project is the ability to define structure,
behaviour, variability and requirements. To make matters even more complicated there are often
several possible non-compatible ways to solve these problems. This document tries to show the
different ways and their pros and cons. In this conclusion a justification based on project expertise
and the history of the language itself.

Some issues stem from the project itself, others are consequences based on the introduction of
new state-of-practice approaches that the language need to support or conform to. Projects like
Autosar, TIMMO, ISO-26262 are sources for more input to the language. Autosar provides a full
platform that the implementation EAST-ADL tries to model logically is executed physically on.
TIMMO builds on EAST-ADL1 and adds ways to model timing. ISO-26262 has a need to model
functions form a safety point of view. As state-of the art is updated the language needs to flex and
adapt, not necessarily by changing the language but by giving an interpretation of how a specific
task should be modelled.

Importance of analysis driven design
The importance of model based design comes from the aspects of seeing the model as a
information storage where one can perform tasks automatically. Using a document approach you
are limited to extraction of data for different purposes using manual labor. With a logical model of
the system it is possible to do semi-automatic analysis by adding data to the model and extract
data to external tools connected to the information model. But with more and more complex
models the need to understand how systems affect systems and not only how components in a
system interacts is needed and this is difficult to do without a larger scope model and automatic
tools.

As the external tools use the data in the model data it is quite possible to make design/architecture
decisions that are fed back to the model automatically. This makes tracking of change easier as
the number of points where data for the system is stored is lowered. But it is possible that analysis
driven design can be made in such a way that permutations of the model under design are created
as the analysis is performed and one can trace the way the model has been updated by the tool
chain. This is not really a language issue but a tool and model presentation issue.

Safety Modelling and Safety Analysis.
In section 3.1.3, we identified two paradigms for model-based safety analysis that currently define
the SOTA in this area (compositional safety analysis & behaviour fault simulation) and reviewed a
number of techniques that fall in this classification. We saw that the two paradigms have different
strengths and benefits, e.g. higher degree of automation is possible with formal techniques or
behavioural simulation while higher performance and more scalable algorithms are available with
deductive compositional safety analysis techniques. Fault simulation performed on semi-formal or
formal models tends to provide more accurate results when specific instances and scenarios of
failure are examined. However, compositional safety analysis techniques can achieve wider
coverage of faults and fault combinations, they are more flexible and can be applied to a greater
range of systems. This makes both paradigms useful in their application to model-based design,
and therefore a modelling language should be designed to support both paradigms.

HiP-HOPS and the AADL’s Error Model Annex can together provide a good basis for the definition
of the Error Model of EAST-ADL2. They both enable the modelling of system failure behaviour and
allow analysis of that behaviour using tools. Because they do not rely on simulation or model
checking, they have greater performance and allow for more expressive descriptions of the failure

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 44 (63)

behaviour. In the case of HiP-HOPS, this latitude makes it possible to develop extensions into
reusable patterns of failure, temporal failure logic, and automatic design optimisation of
dependability versus cost. HiP-HOPS also supports both FTA and FMEA but produces them via a
deductive process, avoiding the combinatorial explosion issues inherent in purely inductive
techniques like DCCA or Altarica.

Overall our analysis shows that HiP-HOPS offers a good range of capabilities and, since its failure
semantics are independent of the modelling language used, it is flexible enough to be incorporated
into other modelling languages. It could therefore provide a basis for defining error modelling and
safety analysis in EAST-ADL2, and its multi-objective optimisation capabilities could be used to
support optimisation in EAST-ADL2 as well. However, HiP-HOPS is based on fault propagation
and lacks the concept of states. Although this is not necessarily a problem in terms of safety
analysis, as Pandora makes it possible to extend HiP-HOPS with temporal logic to implicitly
represent transitions to failed states, explicit state modelling could still be useful for formal
verification & behavioural fault simulation e.g. using model-checkers. For this reason, the state-
based error model annex of AADL could also prove useful as an input to the error modelling in
EAST-ADL2 and we believe that it would still be possible to harmonise a state-based error model
with HiP-HOPS and thereby continue to derive the benefit of its analysis & optimisation
capabilities. Finally, the capabilities of Rodelica as a means of facilitating modelling for fault
diagnosis in EAST-ADL2 will also need to be further explored.

There is very little work on integrating model-based safety analyses techniques with emerging
ADLS and, therefore, there is a large potential for contribution by ATESST2. Any such contribution
would need to take into account developments in the emerging ISO 26262 safety standard and
enable application of the standard, e.g. by facilitating the allocation, decomposition and
demonstration of ASILs as this was discussed in Error! Reference source not found..
A more detailed analysis of SOTA in safety analysis and recommendations for error modelling in
EAST-ADL2 will be given in deliverables I3.2.1 and I3.2.2 which are dedicated to these two topics.

Multi-objective Analysis and Optimisation

In section 3.1.5 we reviewed work on architecture-driven multi-objective analysis and optimisation.
Current trends in architecture analysis are characterized by providing monolithic solutions for
specific non-functional parameters (e.g., either performance or variability only). However,
embedded system architectures need more flexible mechanisms and tools to specify and to
evaluate many different non-functional design alternatives at all design levels. We have seen that,
from a modelling language viewpoint, some aspects need additional investigation.

In general, we need sound modelling means to integrate non-functional information from different
validation and verification viewpoints and provide an optimized global solution to a given design
decision problem. In ATESST2, the thrust of the work has to be put in the specification
mechanisms for integrating multidimensional information, its treatment (transformation/refinement)
to enable mathematical calculation, and the methodological basis to allow developers for a
systematic use of the proposed approach. The use of mathematical algorithms (search strategies,
genetic algorithms, etc.) to explore design alternatives by optimizing objective functions is a core
subject in this topic. Numerous and useful results can be found in the literature. The suitability of
existing algorithms for automotive embedded systems has to be evaluated (as discussed later in
this section).

From the architecture modelling viewpoint, some of the core issues have been defined as follows:

 “Given various allocation alternatives of application/platform models, how to specify the
different property value versions (resulting from the allocation) annotated in the internal
modelling parts of the allocated application/platform models?”

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 45 (63)

Furthermore, building heterogeneous models for analysis implies to integrate analysis results from
different views and/or subsystems and to calculate global predictions.

“How can we express the relationships between different analysis methods to calculate
global quality parameters (derived predictions, optimization objective functions, measures
of effectiveness)?”

Last but not least,:

“How can we drive sensitivity analysis tools by properly qualifying parameters in design
models?”

Some early contributions were identified on these topics, which will serve as a basis for the work in
ATESST2, such as SysML parametric diagrams, and further proposals to model complex analysis
contexts based on SysML and MARTE.

Focusing on the difficult issue of increasingly larger and complex potential design spaces, in
section 3.1.5.2 we saw that the problem of model-based system optimisation, particularly in terms
of dependability (i.e. safety, reliability, availability) and cost, is an important problem that could
have significant implications for system design processes if solved; the ability to rapidly search
through large design spaces to determine optimal or near-optimal design variants, particularly for
complex systems such as real-time embedded systems or active cooperative systems, could result
in designs of superior safety and reduced cost, quite aside from the time-saving benefits.

However, as we have shown, there has been little practical progress in the field, as most research
has focused on solutions to relatively small and restricted theoretical problems; in particular, to our
knowledge there has been no work focused on optimisation in the context of emerging modelling
languages and ADLs. There is, therefore, a clear opportunity for a contribution to the state of the
art in this area.

It would therefore be worthwhile to investigate further how appropriate dependability and cost
modelling concepts can be developed to support multi-objective optimisation of EAST-ADL2
models in conjunction with tools such as HiP-HOPS that provide such advanced capabilities. The
aim of optimization would be to automatically evolve models that do not necessarily meet
dependability requirements to designs that fulfil such requirements with minimal costs.
Optimisation could be achieved via exploration of potential design spaces using meta-heuristics
such as genetic algorithms. The specification of design alternatives and variant sub-architectures
the combinations of which define the potential design space will be described in EAST-ADL2 using
an extension of the present variability concepts that will be achieved in ATESST-2.

Recommendations for dependability and cost modelling concepts to support optimisation in EAST-
ADL2 will be given in deliverable I3.5.1 which is dedicated to this topic.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 46 (63)

6 References

[1] “AUTOSAR Technical Overview” , v2.2.2, Release 3.1,
www.autosar.org/download/specs_aktuell/AUTOSAR_TechnicalOverview.pdf

[2] CMMi

[3] ARTIST2 - Network of Excellence on Embedded Systems Design, Roadmap for Embedded
Software and Systems. March 30, 2006 [Online]. Available <
http://www.artistembedded.org/FP6/ARTIST2Events/Publications/Roadmap/

[4] M. Törngren and O. Larses, “Characterization of model based development of embedded
control systems from a mechatronic perspective - drivers, processes, technology and their
maturity.”, Technical Report, TRITA-MMK 2004:23, ISSN 1400-1179, ISRN/KTH/MMK/R-04/23-SE

[5] R. Jeutter, and B. Heppner, “Model-Based System Development – Is it the Solution to
Control the Expanding System Complexity in the Vehicle?” SAE World Congress 2004. Detroit, MI.
March 8-11. 2004. SAE 2004-01-0300.

[6] “Automotive Spice”, www.automotivespice.com

[7] IEEE Standard, Architecture Description Languages

[8] Nenad Medvidovic and Richard N. Taylor, "A Classification and Comparison Framework for
Software Architecture Description Languages", IEEE Transactions on Software Engineering, 26(1),
pp. 70-93, January 2000.

[9] Christian Dziobek, Florian Wohlgemuth, Thomas Ringler, “AUTOSAR in the Development
Process”, dSPACE MAGAZINE, 1/2008, pp 6-13

[10] “MOST MSC Cookbook.pdf”,
www.mostcooperation.com/publications/Specifications_Organizational_Procedures/index.html?dir=
353

[11] “Bluetooth SIG”, www.bluetooth.org

[12] D3.2 Report on behavioural modelling with the EAST-ADL2, ATESST1 project, 2008.

[13] Cuccuru A., Gérard S. and Radermacher A., Meaningful Composite Structures - On the
Semantics of Ports in UML2.. MoDELS, LNCS 5301:828-842, 2008

[14] S. A. Ferguson. (2007) "The Effectiveness of Electronic Stability Control in Reducing Real-
World Crashes: A Literature Review", Traffic Injury Prevention, 8(4): 329 – 338, Dec. 2007.

[15] IEC 61025 (1990) "IEC (International Electrical Commission) Fault-Tree-Analysis (FTA),"
Geneva.

[16] W.E. Vesely, M. Stamatelatos, J.B. Dugan, J. Fragola, J. Minarick, J. Railsback. (2002)
Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and Mission Assurance,
USA.

[17] IEC 60812 (1991) “IEC (International Electrical Commission) Functional safety of
electrical/electronical/programmable electronic safety/related systems, Analysis Techniques for
System Reliability - Procedure for Failure Mode and Effect Analysis (FMEA),” Geneva.

[18] N. G. Leveson. (1995) Safeware: System Safety and Computers, Addison-Wesley, 1995.

[19] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj (1998). "Using abstraction
and model checking to detect safety violations in requirements specifications,” IEEE Transactions
on Software Engineering, vol. 24, no. 11, pp. 927–947, 1998. [25] IEC 60812, “IEC (Intern. Elect.
Commission),

[20] J. D. Reese and N. G. Leveson. (1997) "Software deviation analysis," in Proceedings of the
19th International Conference on Software Engineering. ACM Press, 1997, pp. 250–261.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 47 (63)

[21] O. Lisagor, J.A. McDermid, D.J. Pumfrey. (2006) "Towards a practicable process for
automated safety analysis," in Proceedings of ISSC 2006.

[22] P. Fenelon and J.A. McDermid (1993). "An integrated toolset for software safety analysis."
Journal of Systems and Software 21(3), pp 279-290.

[23] Y.I. Papadopoulos and J.A. McDermid. (1999) "Hierarchically performed hazard origin and
propagation studies," in Computer Safety, Reliability and Security, 18th International Conference,
SAFECOMP’99, Toulouse, France, September, Proceedings, ser. LNCS, M. Felici, K. Kanoun, and
A. Pasquini, Eds., vol. 1698. Springer, 1999, pp.139–152

[24] B. Kaiser, P. Liggesmeyer, O. Mäckel. (2003). "A New Component Concept for Fault
Trees", Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software (SCS
'03)

[25] L. Grunske, B. Kaiser, Y. Papadopoulos. (2005) "Model-driven Safety Evaluation with
State-Event-Based Component Failure Annotations." Component-Based Software Engineering, 8th
International Symposium, CBSE 2005, Proceedings, pp 33-48.

[26] M. Wallace (2005) "Modular architectural representation and analysis of fault propagation
and transformation." Electronic Notes in Theoretical Computer Science. 141(3):53-71.

[27] P. Feiler, A. Rugina. (2007) Dependability Modelling with the Architecture Analysis and
Design Language. Technical report, CMU/SEI-2007-TN-043. Software Engineering Institute,
Carnegie Mellon University, USA, Jul 2007.

[28] P. Bieber, C. Castel, C. Seguin. (2002) "Combination of fault tree analysis and model
checking for safety assessment of complex system," in Proceedings of the 4th European
Depting Conference on Dependable Computing (EDCC), ser. LNCS, vol. 2485. Springer, pp.
19–31.

[29] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Villafiorita. (2003) "Improving safety
assessment of complex systems: An industrial case study." in FME 2003: Formal Methods,
International Symposium of Formal Methods Europe, Pisa, Italy, September 8-14, 2003,
Proceedings, ser. Lecture Notes in Computer Science, K. Araki, S. Gnesi,and D. Mandrioli, Eds.,
vol. 2805. Springer, pp. 208–222.

[30] M.P.E. Heimdahl, Y. Choi, and M.W. Whalen. (2005) "Deviation analysis: A new use of
model checking," Automated Software Engineering, vol. 12, no. 3, pp. 321–347.

[31] M. Güdemann, F. Ortmeier, and W. Reif. (2007) "Using deductive cause-consequence
analysis (DCCA) with SCADE," in Computer Safety, Reliability, and Security, 26th International
Conference, SAFECOMP 2007, ser. LNCS, F. Saglietti and N. Oster, Eds., vol. 4680.
Springer, pp. 465–478.

[32] K. Lunde, R. Lunde, B. Münker (2006). "Model-Based Failure Analysis with Rodon" In
Proceedings of ECAI 2006 - 17th European Conference on Artificial Intelligence Riva del Garda,
Italy, August 29 -- September 1 2006

[33] J. Mauss, V. May and M. Tatar (2000). "Towards Model-Based Engineering: Failure
Analysis with Mds." In Proceedings of ECAI-2000 Workshop on Knowledge-Based Systems for
Model-Based Engineering, Berlin, Germany, 2000

[34] M. Sachenbacher, P. Struss and C. M. Carlén (2000). "A Prototype for Model-Based on
Board Diagnosis of Automotive Systems." AI Communications, vol: 13, issue: 2. pg 83 - 97, 2000

[35] P. Bunus and K. Lunde. (2008) "Supporting Model-Based Diagnostics with Equation-Based
Object Oriented Languages." 2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools (EOOLT). Jul 8 2008, Paphos, Cyprus.

[36] M. D. Walker, L. Bottaci, Y.I. Papadopoulos. (2007). "Compositional Temporal Safety
Analysis", SAFECOMP 2007, LNCS 4680:105-119, Springer, 2007.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 48 (63)

[37] P.I. Barton and C.C. Pantelides. (1993) "Gproms – a Combined Discrete/Continuous
Modelling Environment for Chemical Processing Systems." Society for Computer Simulation,
Simulation Series 25(3):25-34, 1993.

[38] E. Christen and K. Bakalar. (1999). "Vhdl-Ams - a Hardware Description Language for
Analog and Mixed-Signal Applications." IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol: 46, issue: 10. pg 1263-1272, 1999

[39] P.C. Piela, T.G. Epperly, K.M. Westerberg and A.W. Westerberg (1991). "Ascend: An
Object-Oriented Computer Environment for Modeling and Analysis: The Modeling Language."
Computers and Chemical Engineering, vol: 15, issue: 1. pg 53-72, 1991

[40] W. Zeng, Y. Papadopoulos, D. Parker. (2007), Reliability Optimization of Series-Parallel
Systems Using Asynchronous Heterogeneous Hierarchical Parallel Genetic Algorithm, Journal of
Mind and Computation, 1(4): 403-412, China Academic Electronic Publishing House.

[41] I.P. Wolforth, M.D. Walker, Y.I. Papadopoulos. (2008) "A language for failure patterns and
application in safety analysis." IEEE Conference on Dependable Computing Systems
(DEPCOS’08), June 26-28 2008, Szklarska Poreba, Poland, June 2008.

[42] P. H. Feiler, D. P. Gluch and J. J. Hudak. (2006) "The Architecture Analysis and Design
Language (AADL): An Introduction", Technical report, CMU/SEI-2006-TN-011, 2006. Software
Engineering Institute, Carnegie Mellon University, USA

[43] Papadopoulos Y. (2003) Model-based system monitoring and diagnosis of failures using
State-charts and Fault Trees, Reliability Engineering and System Safety, 81:325-341, Elsevier.

[44] Davis R., Hamscher W. (1992) Model Based Reasoning: Troubleshooting, in Hamscher W.,
Console L., de Kleer J. (eds.), Readings in Model-based Diagnosis, pages 3-28, Morgan Kaufman,
ISBN: 1-55860-249-6.

[45] ISAAC: http://www.cert.fr/isaac

[46] ESACS: http://www.cert.fr/esacs

[47] SAFEDOR: http://www.safedor.org

[48] SETTA: http://www.vmars.tuwien.ac.at/projects/setta

[49] ASSERT:http://www.assert-project.net

[50] H. Espinoza, D. Servat, and S. Gérard, Leveraging Analysis-Aided Design Decision
Knowledge in UML-Based Development of Embedded Systems, SHARK-ICSE 2008. Leipzig,
Germany. May 2008.

[51] S. Künzli, “Efficient design space exploration for embedded systems”, PhD Thesis,
Eidgenössische Technische Hochschule ETH Zürich, April 2006.

[52] R. Racu, A. Hamann, R. Ernst, B. Mochocki, X. Sharon Hu: “Methods for power
optimization in distributed embedded systems with real-time requirements”. CASES 2006: p. 379-
388.

[53] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst. System Level Performance
Analysis - the SymTA/S Approach. In IEE Proceedings Computers and Digital Techniques, Vol.
152, Is. 2, March 2005.

[54] H. Espinoza, “An Integrated Model-Driven Framework for Specifying and Analyzing Non-
Functional Properties of Real-Time Systems”, PhD Thesis, University of Evry, FRANCE.
September 2007.

[55] Papadopoulos Y., Grante C. (2005) Evolving car designs using model-based automated
safety analysis and optimisation techniques, Journal of Systems and Software, Elsevier Science,
76(1):77-89, Elsevier, 2005

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 49 (63)

[56] Frank, A.T., C. Hwang, and W. Kuo (1977). Optimization techniques for system reliability
with redundancy - a review. IEEE Transactions on Reliability, R-26(3), 148-155.

[57] Chen, M.S. (1992) On the computational complexity of reliability redundancy allocation in a
series system. Operations Research Letters, 11, 309-315.

[58] Fyffe, D.E., W.W. Hines, and N.K. Lee (1968). System reliability allocation and a
computational algorithm. IEEE Transactions on Reliability, 17(2), 64-69.

[59] Ghare, P.M. and R.E. Taylor (1969). Optimal Redundancy for Reliability in Series Systems.
Operations Research, 17(5), pp. 838-847.

[60] Nakagawa, Y. and S. Miyazaki (1981). Surrogate constraints algorithm for reliability
optimization problems with two constraints. IEEE Transactions on Reliability, R-30, 175-180.

[61] Coit, D.W. and A.E. Smith (1996). Reliability optimization of series-parallel systems using a
genetic algorithm. IEEE Transactions on Reliability, 45(2).
[62] Kulturel-Konak, S., A.E. Smith, and D.W. Coit (2003). Efficiently Solving the Redundancy
Allocation Problem Using Tabu Search. IIE Transactions, 35(6), 516-526.

[63] Kulturel-Konak, S., F. Baheranwala, and D.W. Coit (2005). Pruned Pareto-Optimal Sets for
the System Red undancy Allocation Problem Based on Multiple Prioritized Objectives. under
review at the European Journal for Operations Research.

[64] Papadopoulos Y. and C. Grante (2005). Evolving car designs using model-based
automated safety analysis and optimisation techniques. Journal of Systems and Software, 76(1),
77-89.

[65] Grunske, L. (2006). Identifying “good” architectural design alternatives with multi-objective
optimization strategies. In: 28th International Conference on Software Engineering (Osterweil, L.J.,
Rombach, H.D., Soffa, M.L. (Ed)), 849-852, ACM, Shanghai, China.

[66] Zeng W., Papadopoulos Y., Parker D. (2007), "Reliability Optimization of Series-Parallel
Systems using an Asynchronous Heterogeneous Hierarchical Parallel Genetic Algorithm", Journal
of Mind and Computation, 1(4): 403-412, China Academic Electronic Publishing House.

[67] G. Guizzardi, L. Ferreira Pires, M. van Sinderen: “Ontology-Based Evaluation and Design
of Domain-Specific Visual Modeling Languages,” Proceedings of the 14th International Conference
on Information Systems Development, Karlstad, Sweden (2005)

[68] A. Cuccuru, C. Mraidha, F. Terrier, S. Gerard: “Templatable Metamodels for Semantic
Variation Points,” ECMDA 2007, Haifa, Israel (June 2007)

[69] B. Selic, A Systematic Approach to Domain-Specific Language Design Using UML, Proc. of
the 10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed
Computing, 2007, ISORC'07, pp. 2-9 ISBN: 0-7695-2765-5, May 2007.7, pp. 2-9 ISBN: 0-7695-
2765-5, May 2007.

[70] L. Fuentes, A. Vallecillo: "An Introduction to UML Profiles," UPGRADE, The European
Journal for the Informatics Professional, 5(2):5-13, April 2004, ISSN: 1684-5285.

[71] F. Lagarde, H. Espinoza, F. Terrier, Ch. André and S. Gérard, Leveraging Patterns on
Domain Models to Improve UML Profile Definition. Fundamental Approaches to Software
Engineering (FASE 08), 4961:116-130, March 2008

[72] AUTOSAR Template Modeling Guideline, www.autosar.org

[UOH_01] N Snooke, C. Price, Automated Failure Effect Analysis for PHM of UAV, Proceedings
of the International Safety and Reliability Conference (ISSRC 2008); Singapore; April 2008; ISBN:
978-981-08-0446-6

[UOH_02] Ricardo Company, AutoFMEA Tool Presentation, www.ricardo.com/download/pdf/
Ricardo_20_Slides_AutoFMEA.pdf

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 50 (63)

Appendix A Research and standardization activities

This list describes research and standardization activities in areas related to EAST-ADL2 scope.

ArtistDesign
http://www.artist-embedded.org/artist

Follow up of the ARTIST2 network of excellence on Embedded Systems Design.

ASSERT
http://www.assert-online.net

ASSERT is a (finished) project with the goal to improve the system-and-software development
process for critical, embedded real-time systems in the Aerospace and Transportation domains.
ASSERT improved the Systems Engineering practice in this area by taking a proof-based
approach. In addition, a reference architecture that can be reused and instantiated in critical
applications was developed. ASSERT was based on the AADL.

AIDE
www.aide-eu.org

AIDE is a (finished) integrated project in the eSafety area. The focus in AIDE is on system support
to handle human behavioural aspects of new safety functions. AIDE applications represent the
kind of complex, safety-related systems that require rigorous development support to manage their
complexity and achieve correctness and safety.

CESAR
CESAR is an ARTEMIS project starting in 2009 with the purpose of identifying means to meet
safety requirements and standards. The project covers several domains, and the idea is to identify
a common core and define specializations for automotive, aerospace, automation and rail
domains.

COMBEST
www.combest.eu

COMBEST will, during 2008-2010, provide a formal framework for component based design of
complex embedded systems. This framework will, by building on substantial highly recognized
background results of the academic partners, partly carried out within the integrated project
SPEEDS, enable and provide:

Enable formal integration of heterogeneous components, such as with different models of
communication or execution;

Provide complete encapsulation of components both for functional and extrafunctional properties
and develop foundations and methods ensuring composability of components;

Enable prediction of emergent key system characteristics such as performance and robustness
(timing, safety) from such characterizations of its subcomponents;

Provide certificates for guarantees of such key system characteristics when deployed on
distributed HW-architectures

CVIS
www.cvisproject.org

The CVIS project aims to design, develop and test the technologies needed to allow cars to
communicate and network directly with the roadside infrastructure.

DECOS

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 51 (63)

http://www.decos.at

DECOS -Dependable Embedded Components and Systems- is an integrative project that will
develop the basic enabling technology to move from a federated distributed architecture
 (Architecture based on functional cluster in which the subsystems are implemented on “dedicated
networks and discrete hardware resources”) to an integrated distributed architecture (the next
generation dependable integrated architectures where “Safety Critical” and “Non Safety Critical”
functionalities are combined in an integrated architecture by means of a dependable infrastructure
and where the different networks of the sub-systems are simplified) in order to reduce
development, production and maintenance cost and increase the dependability of embedded
applications in many application domains. DECOS plans to develop technology invariant software
interfaces and encapsulated virtual networks with predictable temporal properties such that
application software can be transferred to a new hardware and communication base with minimal
effort (legacy re-use). The DECOS methodology and the tools has been evaluated by building
three applications in the automotive, aerospace and control domain, respectively. DECOS builds
on the substantial results of previous European research projects (NextTTA, FIT, TTA, SETTA,
RISE, X-By-Wire, PDCS, DEVA, DSOS). The components and tools developed within DECOS
covers: cluster design, middleware and code generators, validation and certification as well as
systems-on-a-chip (SoCs) for high dependability applications.

Decos is a (finished) FP6 project proposing a distributed execution platform and tools for the
design of dependable embedded systems. The goal is to improve diagnosis, maintenance and
dependability, reduce development and component cost and address intellectual property issues

EASIS
www.easis.org

EASIS is a (finished) project with the goal to define and develop a powerful and highly dependable
in-vehicle electronic architecture. In addition, the project addressed methodology and tools
supporting the development of these systems.

EDONA
http://www.edona.fr/

The EDONA (Environnements de Développement Ouverts aux Normes de l'Automobile) French
project of System@tic Paris-Région cluster aims at the building of an open platform that facilitates
the realization of business modular development chains, interoperable and adaptable to the
different needs of actors and business of the automotive industry. It aims at developing an Eclipse
based tool chain for development of AUTOSAR systems including modelling, simulation, test and
HMI.

ESACS
http://www.cert.fr/esacs/

ESACS (finished) is a RTD project that responds to the Growth 2000 call, Key Action "New
perspectives in Aeronautics".

The technical and scientific objectives of ESACS are to define a methodology to improve the safety
analysis practice for complex systems development, to set up a shared environment based on
tools supporting the methodology, to validate the methodology through its application to case
studies. The environment between design and safety will consist of tools to generate parts of the
safety analysis using information extracted directly from the system model and of a repository
including all the safety information related to the complex system under development.

Families

www.esi.es/en/Projects/Families/

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 52 (63)

FAMILIES (finished) is a next project in a sequence of following projects: ARES and PRAISE, then
ESAPS, and CAFE.

ITEA projects ESAPS, and CAFÉ has lead to a recognized European community on the subject of
System Family Engineering. The FAMILIES project aims at growing the community, consolidating
results into fact-based management for the practices of FAMILIES and its preceding projects, and
to explore fields that were not covered in the previous projects, in order to complete the
Framework.

GST
www.gstforum.org/en/home.htm

GST is a Framework Programme 6 project addressing the standardization of telematics services.

HARTES
www.hartes.org

hArtes is an European project aiming at laying the foundations of a new holistic approach for the
design of complex and heterogeneous embedded solutions (hardware and software), from the
concept to the silicon (or B2B, from the brain to bits). From the application point of view, the
complexity of future multimedia devices is becoming too big to design monolithic processing
platforms. This is where the hArtes approach with reconfigurable heterogeneous systems becomes
vital.

IEC 61508
www.iec.ch

The international standard to be considered when electrical/electronic/programmable electronic
systems are used to carry out safety functions. The standard serves a dual purpose, first to enable
application sector standards using IEC61508 as the basis, and to provide a standard for functional
safety system for application sectors not yet adopting a safety standard.

INTERESTED
www.interested-ip.eu/index.html

INTERESTED as an EU programme with aims regarding the tool-ennvironments that increase
productivity when developing complex embedded systems.

Among the project aims are to integrate the requirements of Major Tool Users of embedded
systems tools to realize a reference and open interoperable embedded systems tool-chain, having
in mind a broad socio-economic benefit for the European citizens, the performance of Embedded
Systems generating long term societal benefits such as increased aircraft and transportation
safety, reduced fuel and energy consumption and competitiveness of key European industries.

ISAAC
www.cert.fr/isaac

Project ISAAC (FP6-2002-Aero-1-501848) builds upon and extends the results of ESACS that has
shown the benefit of using formal techniques to assess aircraft safety. Our goal is to go a step
further into the improvement and integration of safety activities of aeronautical complex systems.
Potential benefits range from higher confidence in the safety of systems to increased
competitiveness of European industries.

ISO 26262
www.iso.org

The adapation of the functional safety standard IEC61508 for the automotive industry.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 53 (63)

MARTES
www.martes-itea.org

MARTES (finished) (Model-based Approach to Real-Time Embedded Systems development)

The aim of the MARTES project is the following: The definition, construction, experimentation,
validation and deployment of a new model-based methodology and an interoperable toolset for
Real-Time Embedded Systems development, and the application of these concepts to create a
development and validation platform for the domain of embedded applications on heterogeneous
platforms architectures.

MISSA
http://www.offis.de/projekte/v/225/missa_e.php

Methodology and tools for formal linking between safety requirements on different design levels;
MISSA project already planned to integrate their results in existing platforms like RTP

Modelisar
www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf

Modelisar is a project that intends to support rapid control prototyping in the automotive domain by
defining an interface between models of the automotive embedded system (includes AUTOSAR
models) and the controlled system.

ModelPlex
www.modelplex.org

MODELPLEX (MODELling solution for comPLEX software systems) is an IST project funded from
call 2.5.5 and will last for 36 months.

MODELPLEX will be driven by Industrial Use Cases ensuring the applicability and the integration
of the different technologies produced by the academics and industrial partners. This approach will
allow an iterative process where the technology providers will receive continuous feedback from
the Industrial Use Cases implementer and benefit from a richer and immediate return on
experience.

MODELPLEX will define and develop a coherent infrastructure specifically for the application of
MDE to the development and subsequent management of complex systems within a variety of
industrial domains, where “complexity” is characterized by a combination of size, heterogeneity,
legacy system management, dynamicity, distribution and autonomy of systems.

Mogentes
www.mogentes.eu

The MOGENTES (1.1.2008 - 31.12.2010) project, EU FP7, has the goal to enhance testing and
verification of dependable embedded systems by means of automated generation of test cases.
The aims are to cover both functional safety and reliability aspects of embedded systems
verification.

OMG
www.omg.org

International organisation that amongst other activities develops standards for information
interchange like UML, SysML, CORBA.

OpenEmbeDD
openembedd.inria.fr

OpenEmbeDD is an Eclipse-based "Model Driven Engineering" platform dedicated to Embedded
and Real-Time systems (E/RT).

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 54 (63)

Its aim is to offer engineers who design and develop E/RT software the means to express,
simulate, validate and test the targeted system before any component has solded on a circuit
board.

PREVENT
www.prevent-ip.org

PReVENT is a (finished) FP6 IP that focused on developing Advanced Driver Assistance Systems
that help drivers avoid accidents by informing them about potential dangers, warning them if there
is no reaction to the information and actively assisting or ultimately intervening if necessary. The
project primarily addressed concept development but also some methodology.

SAFEAIR II
http://www.ist-
world.org/ProjectDetails.aspx?ProjectId=00c8e416d4af4a38ba774a4bec443b4a&SourceDatabase
Id=9cd97ac2e51045e39c2ad6b86dce1ac2

SafeAir II will secure the leading edge ASDE (Avionics System Development Environment) tool set
and its associated methodology developed in the IST SafeAir 1999-10913 project, while including
relevant improved functionalities for end users and demonstrating dramatic cost effectiveness.
Beyond SafeAir results, SafeAir II (finished) will result in a complete and coherent methodology
and development framework to be customised in each industrial company involved in the
embedded systems development, to be able to demonstrate the Y life-cycle in secure conditions.

SAFEDOR
www.safedor.org

Safedor is a large FP6 IP (integrated project) ending in 2009, developing techniques for risk-based
design of ships. A number of sub-projects are developing methods for model-based safety
analysis and optimisation of engineering systems on-board ship including programmable
embedded systems. Techniques and tools that underpin this work include HiP-HOPS, a
dependabiliy analysis tool further developed in ATESST-2, and Simulation X, a simulation tool that
implements Modellica.

SAFESPOT
www.safespot-eu.org

Safespot is a FP6 IP with the objective to understand how intelligent vehicles and intelligent roads
can cooperate to improve road safety. This is done by extending the time horizon for acquiring
safety relevant information for driving, as well as to improve the precision, the reliability and the
quality of driver information, and to introduce new information sources.

SETTA
www.vmars.tuwien.ac.at/projects/setta/index1.htm

SETTA (finished) was a FP5 project on systems engineering of time-triggered-architectures. The
application domain was safety-critical, distributed, real-time applications such as fly-by-wire or
drive-by-wire.

SPEEDS
www.speeds-eu.com

The IP SPEEDS (Speculative and Exploratory Design in Systems Engineering), an Eu FP6 project
ending in Oct 2009, aims at providing a rich component model (HRC) for component based
engineering, in particular providing multiple views for different engineering disciplines. SPEEDS
builds on existing standards like SysML or AUTOSAR. It defines the modelling concepts,
methodologies and analysis mathematics while incorporating them in an environment of
commercial development tools.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 55 (63)

SQUALE
www.squale.org

SQUALE (Security, Safety and Quality Evaluation for Dependable Systems), an open source
project started in june 2008, sponsored by System@tic’s 5th Call for projects SQUALE defines a
set of dependability assessment criteria covering all dependability attributes independent from a
specific application domain.

TIMMO
https://www.timmo.org/

TIMMO is an ITEA2 project (ITEA 2 project 06005) that started in April 2007 and extends to
September 2009.

TIMMO is developing a common, standardized infrastructure for the handling of timing information
during the design of embedded real-time systems in the automotive industry. This will shorten the
development cycle and also increase its predictability.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 56 (63)

Appendix B Industry activities

This list describes industry activities in areas related to EAST-ADL2 scope.

AUTOSAR – AUTOmotive Open System Architecture
www.autosar.org

The AUTOSAR standard will serve as a platform upon which future vehicle applications will be
implemented and will also serve to minimize the current barriers between functional domains. It
will, therefore, be possible to map functions and functional networks to different control nodes in
the system, almost independently from the associated hardware.

MISRA
www.misra.org.uk

Develops amongst other things standards for how languages are used in a safe way, MISRA C,
MISRA C++ and MISRA SL/SF, which are de-facto standards for how software in the automotive
industry should be written.

SWAP
www.vinnova.se/misc/VINNOVA-projekt/Projekt---Listhuvud/15534/

Project that aims at developing an application platform for Autosar compliant development. This
development includes dedicated tools, hardware, Autosar compliant basic software and a test-
bench where an application of software components can be verified.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 57 (63)

Appendix C Languages

Open or standardized modelling languages that are currently used for designing real-time safety
critical embedded systems:

AADL (Architecture Analysis & Design Language)
http://aadl.info
AADL is developed by a Society of Automotive Engineers (SAE) sponsored committee of experts
and was approved and published as SAE Standard AS-5506 in November 2004. AADL is designed
for the specification, analysis, and automated integration of real-time performance-critical (timing,
safety, schedulability, fault tolerant, security, etc.) distributed computer systems.

ALTARICA --> Chen
altarica.labri.fr

ALTARICA is a Data-Flow modelling language that can be seen as a generalization of Block
diagrams and Petri nets. It is based on the notion of mode automata that are finite states automata
with inputs and outputs flows. It is a hierarchical where components exchange information by
means of two mechanisms: flows that propagate values through the model and synchronization of
events that forces two or more events to be simultaneous.

BIP
www-verimag.imag.fr/~async/bip.php

BIP is a modelling language for concurrent systems that considers that components are the
superposition of three distinct layers describing, respectively “Behaviour, Interaction and Priority”.
Interaction involves synchronization between components behaviour with possible transfer of data.

CCM
www.omg.org

The Corba Component Model, CCM, is an OMG standard designed for expressing distributed
component based applications.

ESTEREL
www-sop.inria.fr/meije/esterel/esterel-eng.html

ESTEREL is both a programming language, dedicated to programming reactive systems, and a
compiler, which translates Esterel programs into finite-state machines. It is one of a family of
synchronous languages, like Lustre or Signal/Polychrony, which are particularly well-suited to
programming reactive systems, including real-time systems and control automata. Esterel is the
kernel language for the Esterel Studio toolset developed by Esterel-Technologies.

FIACRE
www-sop.inria.fr/oasis/fiacre

FIACRE is a French acronym for “Format Intermédiaire pour les Architectures de Composants
Répartis Embarqués” (Intermediate Format for Architectures of Embedded Distributed
Components). FIACRE is a formal intermediate modelling language to represent both the
behavioural and timing aspects of systems –in particular embedded and distributed systems- for
formal verification and simulation purposes.

LUSTRE
www-verimag.imag.fr/~synchron

LUSTRE is a synchronous declarative language for programming reactive systems. It is declarative
because a description is a set of equations that must always be verified by the program variables.
A program variable in Lustre is considered to be a function of multi-form time: it has an associated

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 58 (63)

clock, which defines the sequence of instants where the variable takes its values. In that sense,
Lustre belongs to the family of synchronous languages (like Esterel and Signal/Polychrony).

MODELICA
www.modelica.org

Modelica is free available language specification for an object-oriented modelling language for
large, complex, and heterogeneous physical systems.

It is suited for multi-domain modelling, for example mechatronic models in automotive, aerospace
and robotics applications involving mechanical, electrical, hydraulic and control subsystems.

SPEEDS HRC
SPEEDS HRC meta-model – called Heterogeneous Rich Components (HRC) – supports a design
representation of electronic components based on several layers of abstraction. HRC components
are conform to components of SysML and follow an assume/promise approach (so-called contract-
based approach) where each component has a black-box model, which explicates assumptions
about its environment and state corresponding promises on the service offered by the component
to the environment. The HRC meta-model definition provides a common meta-model, including
different viewpoints (functional as well as extra-functional ones) with a system-wide rigorous formal
semantics.

SystemC
www.systemc.org

SystemC is a IEEE Standard 1666™-2005, it is a language built in standard C++ by extending the
language with the use of class libraries. SystemC addresses the need for a system design and
verification language that spans hardware and software. The language is particularly suited to
model system's partitioning, to evaluate and verify the assignment of blocks to either hardware or
software implementations, and to architect and measure the interactions between and among
functional blocks.

VHDL and VHDL-AMS
www.eda-stds.org

VHDL, VHSIC Hardware Description Language,, IEEE standard 1076 and derivative is commonly
used as a design-entry language for field-programmable gate arrays and application-specific
integrated circuits in electronic design automation of digital circuits. VHDL was originally developed
at the behest of the US Department of Defense in order to document the behaviour of the ASICs
that supplier companies were including in equipment.

VHDL-AMS is a derivative of VHDL (IEEE standard 1076-1993). It includes analog and mixed-
signal extensions (AMS) in order to define the behaviour of analog and mixed-signal systems
(IEEE 1076.1-1999).

UML (Unified Modelling Language) and derivatives SysML, MARTE
www.uml.org

UML is a graphic modelling language structured on a meta-model defining the modelling elements
(concept handled by the language) and the semantics of these elements (definitions and meaning
of their uses). It is a formal language structured around three categories of diagrams: Structure
diagrams, Behaviour diagrams, and Interaction diagrams (that can be considered as a sub-
category of behaviour diagrams).

SysML is a modelling language based on version 2.0 of UML (Unified Modelling Language)
developed to meet systems engineering requirements. SysML is not simply an UML profile. It
comprises a subassembly of the UML 2.0 language (limited, to simplify its learning and
implementation in the tools) and an extension of the UML 2.0 language, containing new structures
and diagrams required for systems engineering.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 59 (63)

MARTE is the UML profile for Modelling and Analysis of Real- Time Embedded systems. It
provides support for specification, design, and verification/ validation stages. This new profile is
intended to replace the existing UML Profile for Schedulability, Performance and Time (SPT).
MARTE consists in defining foundations for model-based description of real time and embedded
system for hardware and software.

MARTE also provides features for performance and schedulability analysis.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 60 (63)

Appendix D Tools

A list of commercial, non-commercial and research tools that related to safety, architecture,
AUTOSAR modelling of electrical systems.

ARALIA
www.arboost.com

ARALIA which has been developed by Arboost based on technologies designed for ALTARICA, is
a computation engine for Boolean risk assessment models (Fault Trees, Bloc Diagrams, Event
Trees...) relying on the Binary Decision Diagrams technology.

ARALIA is integrated in the ARALIA workshop and in the Cecilia OCAS toolset, which are both
distributed by Dassault Data Service (see http://www.dassault-data-services.fr).

ASCET (Advanced Simulation and Control Engineering Tool)
ASCET, developed by ETAS is a product family for model-based design of embedded automotive
software. As an authoring tool for ECU Software it is mainly used by function- and software-
developers in the automotive industry (OEM and supplier) to develop software for control-functions
and -algorithms. The tool has a block-diagram style similar to Simulink, but is (as mentioned)
tailored for the use in the automotive industry. From a safety point of view, the tool is quite unique,
because ASCET's code generator is the first one, which is certified for the use in IEC 61508 SIL 3
rated projects.

AUTOSAR Tools
www.vector.com

The Tool Environment DaVinci supports the complete workflow for design, configuration,
simulation, test and deployment of AUTOSAR compliant software for electronic control units. The
Environment consists of the following modules:

• DaVinci System Architect for the design of the distributed system.

• DaVinci Network Designer for the network communication design and schedule definition.

• DaVinci Developer for the application design and RTE (Run-time environment)
configuration.

• Microsar Configuration Suite for the configuration of the AUTOSAR basic software.

www.dspace.com

The following tools are provided from dSPACE for design, configuration and deployment of

AUTOSAR compatible software:

• SystemDesk for definition of the vehicle and software system architecture,

• TargetLink with an AUTOSAR blockset for application design,

• Tresos for the basic software configuration and generation of the RTE.

http://www.artop.org/

The AUTOSAR Tool Platform (Artop) is an implementation of common base functionality for
AUTOSAR development tools. Artop, including its source code, is available free of charge to all
AUTOSAR members and partners. The Artop development process is transparent and based on a
community approach driven by AUTOSAR members and partners. The community that develops
Artop is organized as the Artop User Group.

Doors

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 61 (63)

Doors is a commercial requirement management tool.

Eclipse based tools
www.openembedd.org

OPENEMBEDD is an Eclipse-based "Model Driven Engineering" platform dedicated to Embedded
and Real-Time systems (E/RT). Its aim is to offer engineers, who design and develop E/RT
software the means to express, simulate, validate and test the targeted system before any
component has solded on a circuit board.

EPF Composer

Used to document process-flows in TIMMO and Autosar.

pure::variants

www.pure-systems.com

pure::variants is the tool to outline and manage efficiently all parts of software products with their
components, restrictions and terms of usage. With this set of information and with the continuous
tool support throughout the entire software configuration process valid solutions are created
automatically from the choosen features.

EXITE ACE
http://www.extessy.com/?id=9fec65c63b007e50b906bff21c854729

EXITE ACE is a framework for

• Virtual integration and testing of systems of components, providing

• Real-time and non-RT simulation supported

• Distributed / cluster simulation

• AUTOSAR component testing

• MIL/SIL/HIL execution capabilites for Simulink, Targetlink, Dymola, Rhapsody, Artisan Studio,
ASCET.

GeneAuto
www.geneauto.org

GeneAuto is a toolbox for automatic code generation from a subset of Simulink/Stateflow ® and
Scicos modelling languages to imperative programming languages (currently C easily extensible to
Ada, C++, Java, C#...) compliant with safety critical system certification rules (DO178, ECSS…).
The toolbox provides several elementary tools, which are used to build tool chains satisfying
different kinds of constraints (traceability, resource use minimisation…). Some of the tools are
developed using formal technologies in order to reduce the qualification costs for the tool chains.

MODELICA based tools
Several tools based on Modelica are available, for example, Dymola has been developed by
Dynasim (see http://www.dynasim.se), and Mathmodelica by Mathcore (see www.mathcore.com)

Ptolemy, Ptolemy II
http://ptolemy.eecs.berkeley.edu/index.htm

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent components. The key underlying principle in the
project is the use of well-defined models of computation that govern the interactions between
components. A major problem area being addressed is the use of heterogeneous mixtures of
models of computation.

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 62 (63)

Scade
http://www.esterel-technologies.com/products/scade-suite/

SCADE is a graphical modelling language that has been developed by Verilog (based on Airbus
and Schneider Electric requirements), which has been bought by Telelogic and then by Esterel-
Technologies (see http://www.esterel-technologies.com). It is based on the Lustre synchronous
model of computation.

SIGNAL/POLYCHRONY
www.irisa.fr/espresso/Polychrony

SIGNAL/POLOCHRONY is an integrated development environment and technology demonstrator
for computer-aided embedded software design. It is based on a synchronous multi-clocked model
of computation implemented in the data-flow language Signal. The toolset consists of a compiler, a
model checker and control synthesiser.

Matlab/Simulink/Targetlink tools
Matlab/Simulink, www.mathworks.com

Commonly used language for behaviour definition in automotive systems development.

Targetlink, www.dspace.com

Tool chain with execution platforms with customizable hardware, target code generator using a
subset of the Simulink blocks available. Often combined with simulation hardware for experimental
vehicles enabling the verification of production models in real vehicles.

EXACT, http://www.extessy.com/?id=3b7efa09444a31c5d58596e5bbf87d47

EXACT is a test environment closely integrated with Simulink and Targetlink suitable for functional
validation of components running model-, software- and processor- in-the-loop tests and code
generator qualification.

Scilab/Scicos
www.scilab.org

Scilab/Scicos is a graphical dynamical system modeller and simulator toolbox included in the
Scilab ® engineering and scientific computation software. With Scicos you can create block
diagrams to model and simulate the dynamics of hybrid dynamical systems and compile your
models into executable code. Scicos is used for signal processing, systems control, queuing
systems, and to study physical and biological systems. New extensions allow generation of
component based modelling of electrical and hydraulic circuits using the Modelica language.

SYNDEX
www-rocq.inria.fr/syndex

SYNDEX is a CAD software based on the AAA methodology (Algorithm Architecture Adequation).
It allows specifying application algorithms and distributed architectures, as well as to perform their
adequation by exploring manually and/or automatically the possible implementations while
satisfying real-time constraints. It automatically generates the code corresponding to the chosen
implementation. Suited for rapid prototyping it allows hardware/software codesign.

SystemWeaver
www.systemite.se

SystemWeaver is a MBD software that allows the storage of design decisions, requirements and
other system relevant data in a database. The information structure follows the system structure

ATESST2 D1.0 Grant Agreement 224442

© 2008 The ATESST2 Consortium 63 (63)

used by the modeler rather. It uses a customer defined meta-model for the data, and makes
versioning of all entities from systems to individual requirements possible. It allows for generation
of specifications out of the information in the database according to user defined rules.

Topcased
www.topcased.org

Topcased is a software development environment primarily dedicated to the realization of critical
embedded systems including hardware and/or software.

Topcased promotes model-driven engineering and formal methods as key technologies. Topcased
is released as free/libre/open-source software by a group of partners from various organisations.

Parts of Topcased are also included in OpenEmbedd previously described. Here is a list of
components from Topcased Ganymede version (Topcased version 2, July 2008) useable in the
context of ATESST2 project:

- Model editors (UML2 editor, SysML editor, AADL editor, SAM editor, EMF editor, TOPCASED-
MF),

- Model transformation features (FIACRE, SMUC, UML to C/Java/Python code generation, Model
To Doc), model simulation and verification tools (TOPCASED Model Simulation tools,
TOPCASED-VF,

- Integrated development environment based on ECLIPSE (Cchecker, GNATBench)

- Interoperability and transversal services (TOPCASED-Bus, plug-ins for remote tools connections
to the TOPCASED environment, change management facilities, requirement traceability mean
(TRAMWAY), configuration management (TVM))

